Основы общей теории измерений. Правильность измерения Международная система единиц

Точность измерений

помощью так называемых измерительных приборов постоянно возрастает с ростом науки (Измерения; Единицы мер - абсолютные системы). Она зависит теперь не только от тщательного приготовления приборов, но еще от нахождения новых принципов измерений. Так, напр., цвета тонких пластинок - явление интерференции света - позволяют измерить линейные величины, гораздо меньшие, чем самые точные винтовые микрометры. Болометр измеряет тепловые изменения во множестве случаев гораздо меньшие, чем те, которые доступны термомультипликатору. Можно сделать, однако, общее замечание, что новые методы измерения гораздо чаще ведут к увеличению точности определений весьма малых изменений той или другой величины, чем к увеличению точности определения этой целой величины.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Точность измерений" в других словарях:

    Точность измерений - Качество измерений, отражающее близость их результатов к истинному значению измеряемой величины Источник: ГОСТ 24846 81: Грунты. Методы измерения деформаций оснований зданий и сооружений …

    Характеристика качества измерений, отражающая степень близости результатов измерений к истинному значению измеряемой величины. Чем меньше результат измерения отклоняется от истинного значения величины, т. е. чем меньше его погрешность, тем выше Т … Физическая энциклопедия

    точность измерений - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN accuracy of measurements …

    точность измерений - поверка. поверять. прибор врет. см. показывать время … Идеографический словарь русского языка

    ГОСТ Р ЕН 306-2011: Теплообменники. Измерения и точность измерений при определении мощности - Терминология ГОСТ Р ЕН 306 2011: Теплообменники. Измерения и точность измерений при определении мощности: 3.31 величина воздействия: Величина, не являющаяся предметом измерения, но способная влиять на получаемый результат. Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    точность результата измерений - точность измерений Одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения. Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность. [РМГ 29 99] Тематики метрология,… … Справочник технического переводчика

    точность - 3.1.1 точность (accuracy): Степень близости результата измерений к принятому опорному значению. Примечание Термин «точность», когда он относится к серии результатов измерений, включает сочетание случайных составляющих и общей систематической… … Словарь-справочник терминов нормативно-технической документации

    Средства измерений степень совпадения показаний измерительного прибора с истинным значением измеряемой величины. Чем меньше разница, тем больше точность прибора. Точность эталона или меры характеризуется погрешностью или степенью… … Википедия

    точность - Степень близости результата измерений к принятому опорному значению. Примечание. Термин «точность», когда он относится к серии результатов измерений (испытаний), включает сочетание случайных составляющих и общей систематической… … Справочник технического переводчика

    точность средства измерений - точность Характеристика качества средства измерений, отражающая близость его погрешности к нулю. Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений. [РМГ 29 99] Тематики метрология, основные понятия Синонимы точность … Справочник технического переводчика

Книги

  • Физические основы измерений в технолог. пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич Серия: Учебники для вузов. Специальная литература Издатель: Лань ,
  • Физические основы измерений в технологиях пищевой и химической промышленности. Учебное пособие , Попов Геннадий Васильевич , Земсков Юрий Петрович , Квашнин Борис Николаевич , В настоящем пособии изложены краткие теоретические сведения о закономерностях измерений, измерительных системах, элементах физической картины мира, а также о принципах измерений на основе… Серия: Учебники для ВУЗов. Специальная литература Издатель:

Правильность измерения

"...Правильность измерения (trueness of measurement): степень близости среднего значения, полученного на основании большой серии измерений, к истинному (принятому опорному) значению..."

Источник:

"ЛАБОРАТОРНАЯ МЕДИЦИНА. ТРЕБОВАНИЯ К ЛАБОРАТОРИЯМ РЕФЕРЕНТНЫХ ИЗМЕРЕНИЙ. ГОСТ Р ИСО 15195-2006 "

(утв. Приказом Ростехрегулирования от 27.12.2006 N 349-ст)

"...Правильность измерения (trueness of measurement): степень близости среднего значения, полученного на основании большой серии результатов измерений, к истинному значению..."

Источник:

" Лаборатории медицинские. Частные требования к качеству и компетентности. ГОСТ Р ИСО 15189-2009 "

(утв. Приказом Ростехрегулирования от 09.12.2009 N 629-ст)


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Правильность измерения" в других словарях:

    измерения - 3.8.37 измерения: Нахождение значения физической величины опытным путем с помощью технических средств, имеющих нормированные метрологические свойства. Источник: СТО Газпром 2 2.3 141 2007: Энергохозяйство ОАО "Газпром". Термины и… …

    Измерения в условиях стандартной геометрии (по схеме, представленной в приложении 4 , черт. 3) - 3.5.1. Измерения в условиях стандартной геометрии (по схеме, представленной в приложении 4 , черт. 3) 3.5.1.1. Проверяют правильность настройки порогов привязки усилителя к уровню шумов и фронту входного сигнала. В соответствии с методикой,… … Словарь-справочник терминов нормативно-технической документации

    Правильность социологической информации - одна из характеристик качества социологической информации. Под П. с. п. понимается отсутствие систематических ошибок, связанных с инструментом исследования. Оценка П. с. и. осуществляется путем выдвижения гипотез о возможных систематических… … Социологический справочник

    ГОСТ Р 53573-2009: Вибрация. Измерения вибрации, передаваемой машиной через упругие изоляторы. Общие требования - Терминология ГОСТ Р 53573 2009: Вибрация. Измерения вибрации, передаваемой машиной через упругие изоляторы. Общие требования оригинал документа: 3.1 область контакта (contact area): Область, через которую вибрация передается от машины в… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 51318.16.1.4-2008: Совместимость технических средств электромагнитная. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений. Часть 1 - 4. Аппаратура для измерения параметров индустриальных радиопомех и помехоустойчивости. Устройства для измерения излучаемых радиопомех и испытаний на устойчивость к излучаемым радиопомехам - Терминология ГОСТ Р 51318.16.1.4 2008: Совместимость технических средств электромагнитная. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений. Часть 1 4. Аппаратура для измерения… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 54365-2011: Лесоматериалы круглые. Метод измерения объема по верхнему диаметру и сбегу - Терминология ГОСТ Р 54365 2011: Лесоматериалы круглые. Метод измерения объема по верхнему диаметру и сбегу оригинал документа: 3.2 бревно: Круглый сортимент различного назначения кроме тонкомерной рудничной стойки, жердей и кольев. Примечание… … Словарь-справочник терминов нормативно-технической документации

    ГОСТ 29115-91: Блоки и устройства детектирования гамма-излучения спектрометрические на основе полупроводниковых детекторов. Методы измерения основных параметров - Терминология ГОСТ 29115 91: Блоки и устройства детектирования гамма излучения спектрометрические на основе полупроводниковых детекторов. Методы измерения основных параметров оригинал документа: 3.5.2. Измерение БД с детектором типа «колодец»… … Словарь-справочник терминов нормативно-технической документации

    опорный метод измерения объема - 3.11 опорный метод измерения объема: Относительно точный метод измерения объема, основанный на учете сбега каждого бревна, применяемый при выборочных измерениях для установления погрешности рабочих методов и корректировки их систематической… … Словарь-справочник терминов нормативно-технической документации

    Часы прибор для измерения времени - Содержание: 1) Исторический очерк развития часовых механизмов: а) солнечные Ч., b) водяные Ч., с) песочные Ч., d) колесные Ч. 2) Общие сведения. 3) Описание астрономических Ч. 4.) Маятник, его компенсация. 5) Конструкции спусков Ч. 6) Хронометры … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    условия - (см. раздел 1) d) Может ли машина представлять опасности при создании или потреблении определенных материалов? Нет

Под качеством измерений понимают совокупность свойств, обусловливающих получение результатов с требуемыми точностными характеристиками и в необходимом виде.

Качество измерений характеризуется такими показателями, как точность, правильность, достоверность, сходимость и воспроизводимость результатов.

Точность измерения – качество измерения, отражающее близость его результата к истинному значению измеряемой величины. Количественно точность может быть выражена величиной, обратной относительной погрешности, взятой по модулю.

Правильность измерений – это характеристика качества измерений, отражающая близость к нулю систематической погрешности результатов измерений.

Достоверность измерений определяется степенью доверия к результату измерения и характеризуется вероятностью того, что истинное значение измеряемой величины находится в указанных пределах.

Сходимость результата измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами т средствами измерений и в одних и тех же условиях.

Воспроизводимость результатов измерений – характеристика качества измерений, отражающая близость друг к другу результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами измерений, разными операторами, но приведенных к одним и тем же условиям.

  1. Классификация измерений

Измерения классифицируются по нескольким признакам.

а) По зависимости измеряемой величины от времени:

    статические (измеряемая величина остается постоянной во времени в процессе измерения);

    динамические (измеряемая величина изменяется в процессе измерения).

б) По сложившимся совокупностям измеряемых величин:

    электрические ;

    механические ;

    теплотехнические ;

    физико-химические ;

    радиационные ;

    и т.д .

в) По условиям, определяющим точность результата:

    измерения максимально возможной точности , достижимой при современном уровне техники. Это измерения, связанные с созданием и воспроизведением эталонов, а также измерения универсальных физических констант;

    контрольно-поверочные измерения , погрешности которых не должны превышать заданного значения. Такие измерения осуществляются государственными и ведомственными метрологическими службами;

    технические измерения , в которых погрешность результата определяется характеристиками средств измерений. Технические измерения являются наиболее распространенными и выполняются во всех отраслях хозяйства и науки. К ним, в частности, относятся и технологические измерения.

г) По числу измерений (наблюдений), выполняемых для получения результата:

    измерения с однократным наблюдением (обыкновенные );

    измерения с многократными наблюдениями (статистические ).

Под наблюдением при измерении в данном случае понимают экспериментальную операцию, выполняемую в процессе измерения, в результате которой получают одно значение из группы значений величины, подлежащих совместной обработке для получения результатов измерения.

д) По способу получения результата (по виду уравнения измерения):

    прямые измерения – измерения, при которых искомое значение величины находят непосредственно из опытных данных. В процессе прямого измерения объект измерения приводится во взаимодействие со средством измерений и по показаниям последнего, отсчитывают значение измеряемой величины или указанные измерения умножаются на постоянный коэффициент для определения значения измеряемой величины. Математически прямое измерение можно описать выражением (2). Примером прямых измерений могут служить: измерение длины линейкой, массы с помощью весов, температуры термометром и т.д. К прямым измерениям относят измерения подавляющего большинства параметров химико-технологических процессов.

    косвенные измерения - измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Примером косвенных измерений могут служить измерения: плотности однородного тела по его массе и объему, электрического сопротивления по падению напряжения и силе тока и т.д.

В современных микропроцессорных измерительных приборах очень часто вычисления искомой измеряемой величины производятся “внутри” прибора. Измерения, проводимые такого рода средствами измерений, относятся к прямым измерениям. К косвенным измерениям относятся только такие измерения, при которых расчет осуществляется в ручную или автоматически, но после получения результатов прямых измерений. При этом может быть учтена отдельно погрешность расчета.

    совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величины находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Пример . Нахождение сопротивлений двух резисторов по результатам измерения их сопротивлений при последовательном и параллельном включении резисторов.

R2= (R 1 *R 2)/ (R 1 +R 2)

    совместные измерения – проводимые одновременно измерения двух или нескольких не одноименных величин для нахождения зависимости между ними.

Например . При определении зависимости сопротивления резистора от температуры используют известное выражение:

где R t – сопротивление резистора при некоторой температуре t; R 20 – сопротивление резистора при температуре 20 о С; α и β – температурные коэффициенты. Искомые значения R 20 , α и β находят решением системы трех уравнений, составленной для трех различных значений температуры. Здесь сопротивление R t и температура t измеряются прямым способом.

Кроме приведенных выше признаков классификации измерений для конкретных случаев при необходимости могут быть использованы и другие. Например, измерения можно подразделить в зависимости от места выполнения на лабораторные и промышленные; в зависимости от процедуры выполнения во времени – на непрерывные и периодические; в зависимости от формы представления результатов – на абсолютные и относительные и т.д.

Применение рассмотренных выше элементов общей теории измерений необходимо для обеспечения точности и достоверности результата измерения. При многократных наблюдениях получают ряд значений, обрабатывая которые находят результат измерения. Для обработки применяют инструменты математической статистики, рассматривая ряд значений как выборку из генеральной совокупности. Опираясь на теорию вероятностей, математическая статистика позволяет оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала.

Точность характеризуется значением, обратным значению относительной погрешности . Величина, обратная абсолютной погрешности , называется мерой точности. В зависимости от требуемой точности, в процессе измерений могут применяться как однократные, так и многократные наблюдения. Если выполняется лишь одно наблюдение, то результат наблюдения является результатом измерения. Если выполняется больше одного наблюдения, результат измерения получают в итоге обработки результатов наблюдений, как правило, в виде среднего арифметического.

Требуемая точность технических измерений может также обеспечиваться повторением многократных наблюдений. В этом случае многократные наблюдения одного и того же объекта выполняются несколько раз. Чтобы сократить время, необходимое для обработки нескольких рядов многократных наблюдений, в начале процесса обработки применяют индикаторы, позволяющие определить предпочтительный ряд и в дальнейшем обрабатывать только этот ряд.

Такими индикаторами является сумма остаточных погрешностей и сумма квадратов остаточных погрешностей. Эти индикаторы являются косвенной характеристикой несмещенности и эффективности оценки, полученной при обработке результатов многократных наблюдений.

Если измерения проводились несколько раз и получено несколько рядов результатов наблюдений, то при одинаковом количестве наблюдений в разных рядах наименьшую сумму остаточных погрешностей будет иметь тот ряд, в котором результаты распределились симметрично относительно среднего арифметического значения, т.е. наиболее близко к нормальному закону. Для дальнейших вычислений рекомендуется выбирать именно его, т.к. он в наибольшей степени будет удовлетворять условию равноточности, а при исключенной систематической погрешности - условию несмещенности оценки результата измерения.

Несмещенная оценка - статистическая оценка, математическое ожидание которой совпадает с оцениваемой величиной. Про несмещенную оценку говорят, что она лишена систематической ошибки.

Однако симметричность не является исчерпывающей характеристикой распределения. Следующим важным в метрологии признаком является компактность распределения. По этому признаку при фиксированном числе наблюдений предпочтительный ряд может быть определен индикатором эффективности. Эффективной называется та из нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию. Условию эффективности будет удовлетворять ряд с наименьшей суммой квадратов остаточных погрешностей.

Очевидно, что в практической метрологии эффективная оценка является предпочтительной. Признак эффективности свидетельствует о том, что субъективная составляющая случайной погрешности минимальна, наблюдения выполнялись более аккуратно и будет обеспечен наименьший размер случайной погрешности.

В теоретической метрологии рассматривается также состоятельная оценка, являющаяся идеальной моделью для многократных измерений, к которой желательно стремиться, но получить ее практически невозможно. При состоятельной оценке истинное и действительное значение совпадают, погрешность равна нулю. Это достигается бесконечным увеличением числа наблюдений. Состоятельной называется оценка, в которой при числе наблюдений, стремящемся к бесконечности, дисперсия стремится к нулю.

Достоверность результата измерения полагается высокой, если близка к единице ( - вероятность , с которой истинное значение физической величины удалено от действительного значения на интервал , не превышающий погрешности). В технических измерениях значение , как правило, принимается равным 0,95. Это говорит о том, что если проводить такие измерения 100 раз, то в 95 случаях истинное значение окажется удалено от действительного значения на интервал , размеры которого не превышают погрешности, а в 5 случаях окажется удалено на интервал , превышающий погрешность . Поэтому в измерениях, имеющих непосредственное влияние на безопасность и здоровье, значение принимается равным 0,99. Такую же вероятность назначают при однократных измерениях. Это объясняется тем, что при прочих равных обстоятельствах (в первую очередь , при одинаковом числе наблюдений), размеры и взаимосвязаны: чем больше , тем больше , следовательно, назначая высокую степень уверенности, мы рассматриваем наихудший вариант контролируемых событий.

Задавая большую степень неопределенности контролируемым посредством измерений событиям, мы получаем большую уверенность в том, что они произойдут.

Существует способ одновременно увеличивать достоверность и уменьшать неопределенность результата измерений, т.е. увеличивать и уменьшать . Этот способ - увеличение числа наблюдений, . Однако дополнительные наблюдения делают более дорогим процесс измерения. В этой связи актуален рассмотренный в первом разделе вопрос корректной записи результатов измерений.

2.5. Прямые равноточные измерения с многократными наблюдениями

Метод прямых равноточных измерений с многократными наблюдениями является основополагающим, используется в технических измерениях для повышения достоверности результата, является основой для многих методов метрологических измерений, для методов косвенных измерений.

Классификация прямых и многократных измерений рассмотрена выше. Требование прямых измерений связано с правилами учета погрешности. Современные средства измерений, как правило, являются сложными устройствами, выполняющими косвенное измерение физических величин. Однако результаты, как правило, рассматриваются как результаты прямых измерений, - поскольку погрешность косвенных измерений внутри средства измерений уже учитывается его классом точности.

Равноточность измерений истолковывается в широком смысле, как одинаковая распределенность (в узком смысле равноточность измерений понимается как одинаковость меры точности всех результатов измерений). Наличие грубых ошибок (промахов) означает нарушение равноточности как в широком, так и в узком смысле.

На практике условие равноточности считается выполненным, если наблюдения производятся одним и тем же оператором, в одинаковых условиях внешней среды, с помощью одного и того же средства измерения. При таких условиях будут получены равнорассеянные ( по -другому, равноточные, от слов равная точность ), т.е. одинаково распределенные случайные величины

Метод прямых равноточных измерений с многократными наблюдениями изложен в ГОСТ 8.207 - 76. В этом разделе дополнительно к ГОСТ 8.207 - 76 приводятся необходимые для выполнения расчетов сведения и комментарии.

Комментарии к ГОСТ 8.207 - 76. Раздел 2 . Результат измерения и оценка его среднего квадратического отклонения

Результат измерения находят как среднее арифметическое результатов наблюдений:

где - число наблюдений.

Страница 1

Точность измерения. Основное понятие. Критерии выбора точности измерений. Классы точности средств измерений. Примеры средств измерений разных классов точности.

Измерение – совокупность операций по применению технического средства, хранящего единицу величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей в явном или неявном виде и получение значения этой величины.

Вообще метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Усовершенствование точности измерений стимулировало развитие наук, предоставляя более достоверные и чувствительные средства исследований.

От точности средств измерения зависит эффективность выполнения различных функций: погрешности счетчиков энергии приводят к неопределенности в учете электроэнергии; погрешности весов ведут к обману покупателей или к большим объемам неучтенного товара.

Повышение точности измерений позволяет определить недостатки технологических процессов и устранить эти недостатки, что приводит к повышению качества продукции, экономии энергетических и тепловых ресурсов, сырья, материалов.

Измерения могут быть классифицированы по характеристике точности на:

Равноточные – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений и в одних и тех же условиях;

Неравноточные - ряд измерений какой-либо величины, выполненных несколькими различными по точности СИ и (или) в нескольких разных условиях.

К разным видам средств измерения предъявляют специфические требования: например, лабораторные средства должны обладать повышенной точностью и чувствительностью. Высокоточными СИ являются, например, эталоны.

Эталон единицы величины – средство измерений, предназначенное для воспроизведения и хранения единицы величины, кратных или дольных ее значений с целью передачи ее размера другим средствам измерений данной величины. Эталоны являются высокоточными средствами измерений и поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передается «сверху вниз» от более точных средств измерений к менее точным «по цепочке»: первичный эталон ® вторичный эталон ® рабочий эталон 0-го разряда ® рабочий эталон 1-го разряда … ® рабочее средство измерений.

Метрологические свойства средств измерений – это свойства, влияющие на результат измерений и его погрешность. Показатели метрологических свойств являются их количественной характеристикой и называются метрологическими характеристиками. Все метрологические свойства средств измерений можно разделить на две группы:

· Свойства, определяющие область применения СИ

· Свойства, определяющие качество измерения. К таким свойствам относятся точность, сходимость и воспроизводимость.

Наиболее широко в метрологической практике используется свойство точности измерений, которое определяется погрешностью.

Погрешность измерения – разность между результатом измерения и истинным значением измеряемой величины.

Точность измерений СИ – качество измерений, отражающее близость их результатов к действительному (истинному) значению измеряемой величины. Точность определяется показателями абсолютной и относительной погрешности.

Абсолютная погрешность определяется по формуле: Хп= Хп - Х0,

где: Хп – погрешность поверяемого СИ; Хп – значение той же самой величины, найденное с помощью поверяемого СИ; Х0 - значение СИ, принятое за базу для сравнения, т.е. действительное значение.

Однако в большей степени точность средств измерений характеризует относительная погрешность, т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению величины, измеряемой или воспроизводимой данным СИ.

В стандартах нормируют характеристики точности, связанные и с другими погрешностями:

Систематическая погрешность – составляющая погрешности результата измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины. Такая погрешность может проявиться, если смещен центр тяжести СИ или СИ установлен не на горизонтальной поверхности.

Случайная погрешность – составляющая погрешности результата измерения, изменяющаяся случайным образом в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. Такие погрешности не закономерны, но неизбежны и присутствуют в результатах измерения.

Погрешность измерений не должна превышать установленных пределов, которые указаны в технической документации к прибору или в стандартах на методы контроля (испытаний, измерений, анализа).

Чтобы исключить значительные погрешности, проводят регулярную поверку средств измерений, которая включает в себя совокупность операций, выполняемых органами государственной метрологической службы или другими уполномоченными органами с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям.

В повседневной производственной практике широко пользуются обобщенной характеристикой – классом точности.

Класс точности средств измерений – обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в нормативных документах. При этом для каждого класса точности устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это важно знать при выборе СИ в зависимости от заданной точности измерений.

Обозначение классов точности осуществляются следующим образом:

s Если пределы допускаемой основной погрешности выражены в форме абсолютной погрешности СИ, то класс точности обозначается прописными буквами римского алфавита. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, присваиваются буквы, находящиеся ближе к началу алфавита.