Полимеразная цепная реакция принцип метода. ПЦР диагностика (полимеразная цепная реакция). «Диаэм»: оборудование для классической ПЦР

Генетика бактерий. Информация для второго занятия.

Полимеразная цепная реакция

Полимеразная цепная реакция – метод, позволяющий провести многократное увеличение (амплификацию) количества определенных молекул ДНК в анализируемом образце (в том числе в биологическом материале или чистой культуре).

Главные преимущества ПЦР как диагностического метода в микробиологии – очень высокая чувствительность, позволяющая обнаружение крайне малых концентраций возбудителей в образцах, а такжерегулируемая специфичность, позволяющая обнаруживать или идентифицировать возбудителей на родовом, видовом или субвидовом уровне. Основной недостаток ПЦР вытекает из его крайне высокой чувствительности – образы очень легко загрязнить ДНК из положительного контроля, другого образца или продукта ПЦР, что приведет к ложноположительной реакции. Это накладывает жесткие ограничения на условия, в которых производится смешивание ПЦР и работа с готовыми продуктами ПЦР.

Проведение ПЦР. Готовится реакционная смесь, содержащая следующие компоненты:

    Выделенную ДНК из исследуемого образца,

    Буферный раствор,

    Ионы Mg2+ (необходимы для работы фермента),

    Два праймера – одноцепочечныекороткие молекулы ДНК (длина чаще всегоот 18 до 24 нуклеотидов), комплементарные концам разных цепей обнаруживаемой последовательности ДНК.

    Смесь дезоксинуклеотидтрифосфатов.

    Термостойкую ДНК-полимеразу (чаще всего используется Taq-полимераза – полимераза, выделенная из Thermus aquaticus ).

Затем данная реакционная смесь помещается в амплификатор, который фактически представляет собой программируемый термостат. В амплификаторе проводится 30-40 циклов смены температур. Каждый из этих циклов состоит из трех этапов (см. Рис. 1):

    Денатурация (температура 94 о С) – разрываются водородные цепи, и цепочки ДНК расходятся.

    Отжиг праймеров (температура обычно в районе 50-60 о С) – к концам цепей ДНК присоединяются праймеры. Вообще, при снижении температуры энергетически выгоднее воссоединение исходных цепей ДНК из исследуемого образца (ренатурация), однако концентрация праймеров в реакционной смеси на много порядков больше концентрации ДНК из образца (по крайней мере, на начальных циклах ПЦР), поэтому реакция отжига праймеров протекает быстрее ренатурации ДНК. Температура отжига выбирается в зависимости от температур плавления (денатурации) праймеров.

    Элонгация (температура обычно 72 о С) – ДНК-полимераза достраивает праймеры по матрице длинных цепей ДНК. Температура соответствует оптимальной температуре работы используемой ДНК-полимеразы.

Детекция результатов отличается в различных вариантах постановки ПЦР и описана в разделе «Разновидности ПЦР».

Динамика ПЦР

На ранних циклах ПЦР количество двухцепочечных молекул ДНК, размер которых определяется расстоянием между местами посадки праймеров, удваивается с каждым циклом. Также образуется малое количество более длинных молекул ДНК, которым можно пренебречь (см. Рис 2).

Таким образом, на ранних циклах количество продукта ПЦР описывается формулой m*2 n , где m – исходное количество искомой ДНК в пробе, n – число циклов. Затем реакция выходит на плато. Это происходит из-за накопления продукта реакции, снижения концентрации праймеров и дезоксинуклеотидтрифосфатов, а также за счет повышения концентрации пирофосфата (см. Рис 3).

Разновидности ПЦР

Конвенциональная ПЦР

В данном варианте постановки ПЦР реакция идет заранее выбранное число циклов (30-40), после чего анализируется, произошло ли накопление двуцепочечных молекул ДНК в реакционной смеси.

Данный вариант постановки ПЦР при использовании в качестве способа диагностики является качественным методом. Положительная реакция свидетельствует о наличии хотя бы следовых количеств искомых молекул ДНК в образце. Отрицательная реакция свидетельствует об их отсутствии. Количественная оценка содержания исходных молекул ДНК в образце невозможна из-за выхода реакции на плато.

Основным методом выявления наличия продукта является электрофорез в агарозном или полиакриламидном геле. Продукты ПЦР разделяются в геле под действием электрического поля в соответствии с их молекулярной массой. В гель добавляется интеркалирующий краситель (флуоресцирующий в связанном с двухцепочечной ДНК состоянии - чаще всего бромистый этидий). Таким образом, при облучении ультрафиолетом можно будет увидеть наличие или отсутствие полоски, соответствующей ДНК необходимой молекулярной массы. При проведении ПЦР в диагностических целях всегда ставятся положительный и отрицательный контроли реакции, с которыми сравниваются образцы (см. Рис. 4).

ПЦР в реальном времени

В данном варианте постановки ПЦР количество продукта ПЦР в реакционной смеси регистрируется постоянно в ходе протекания реакции. Это позволяет построить кривую протекания реакции (см. Рис. 3) и, исходя из неё, рассчитать количество искомых молекул ДНК в образцах.

Один из видов проведения ПЦР в реальном времени – с использованием интеркалирующегокрасителя, который добавляется прямо в реакционную смесь (чаще всего используется SYBRGreen). Другой вид – с использованием одного из видов флуоресцирующих зондов, связывающихся с участком внутри ПЦР-продукта, что позволяет повысить специфичность обнаружения (см. Рис 5).Детекцияфлуоресценции происходит непосредственно в приборе в ходе протекания реакции.

Помимо возможности количественного обнаружения, существуют и другие достоинства ПЦР в реальном времени по сравнению с конвенциональной. Данный вариант ПЦР более прост, быстр, а также не требует открывания пробирок с продуктами ПЦР, что уменьшает вероятность загрязнения других образцов. Основной недостаток – более высокая стоимость амплификатора со встроенной возможностью детекциифлуоресценции по сравнению с обычным.

Цифровая количественная ПЦР

Новый, дорогостоящий и пока малораспространенный вариант ПЦР, позволяющий более точно определять количество ДНК в образце.В данном варианте реакционная смесь, содержащая флуоресцентный краситель, разбивается на огромное число микроскопических объемов (например, капелек в эмульсии). После протекания ПЦР анализируется, в какой доле капелек реакция оказалась положительной и, соответственно, наблюдается флуоресценция. Эта доля будет пропорциональна числу искомых молекул ДНК в образце.

ПЦР с обратной транскрипцией

В данном случае перед тем или иным вариантом ПЦР производится реакция обратной транскрипции (РНК в ДНК) с использованием фермента ревертазы. Таким образом, этот метод позволяет проводить качественное или количественное обнаружение молекул РНК. Это может использоваться для детекции РНК-содержащих вирусов или определения уровня транскрипции (количества мРНК) того или иного гена.

Рисунок 1. Этапы ПЦР. Красным цветом обозначены праймеры.

Рисунок 2. Накопление двуцепочечных молекул ДНК, ограниченных праймерами, в ходе ПЦР.

Рисунок 3. Динамика реакции ПЦР при разных изначальных концентрациях искомых молекул ДНК в пробе. (а) – наибольшая концентрация (б) – промежуточная концентрация (в) – наименьшая концентрация

Рисунок 4. Агарозный электрофорез продуктов ПЦР. К+ – положительный контроль (заведомо присутствует искомая ДНК). 1-7 – исследуемые образцы (из них 1-2 – положительные, 3-7 – отрицательные). K- –отрицательный контроль (заведомо отсутствует искомая ДНК). Во многих случаях помимо целевого продукта видны более легкие неспецифические продукты реакции (праймер-димеры).

Рисунок 5. Способы детекции при использовании ПЦР в реальном времени. (а) – интеркалирующий краситель – флуоресцирует при связывании с двухцепочечной ДНК (б) – зонд Taqman – флуоресценция возникает при расщеплении зонда ДНК полимеразой с 5’-3’ эндонуклеазной активностью за счет разделения флуорофора и гасителя. (в) – зонд MolecularBeacon - флуоресценция возникает при гибридизации зонда с целевым фрагментом за счет пространственного отдаления флуорофора и гасителя (г) – зонды LightCycler - флуоресценция акцептора возникает при гибридизации зондов (содержащих акцептор и донор) с целевым фрагментом за счет резонансного переноса энергии флуоресценции (FRET).

Часто используется в качестве экспресс-метода для индикации и идентификации вирусов.

Впервые этот метод разработал К. Мюллис (США) в 1983 т. Благодаря высокой чувствительности, специфичности и простоте выполнения его широко применяют в генетике, судебной медицине, диагностике и других областях.

Суть метода - амплификация, т. е. увеличение числа копий строго определенных фрагментов молекулы ДНК in vitro. В этом методе действуют матричный механизм и принцип комплементарности. Две одинарные полинуклеотидные цепи (нуклеиновой кислоты) способны связываться водородными связями в одну двуспиральную, если последовательности нуклеотидов одной точно соответствуют последовательности нуклеотидов другой так, что их азотистые основания могут образовывать пары аденин-тимин и гуанин-цитозин.

ПЦР основана на амплификации ДНК с помощью термостабильной ДНК-полимеразы, осуществляющей синтез взаимно комплементарных цепей ДНК, начиная с двух праймеров. Праймер - это фрагмент ДНК, состоящий из 20-30 нуклеотидов. Эти праймеры (затравки) комплементарны противоположным цепям ДНК. При синтезе ДНК праймеры встраиваются в цепь новосинтезирующихся молекул ДНК.

Обычно ПЦР ставят в 25-40 циклов. Каждый цикл включает три этапа: первый - денатурация при 92-95 °С. При этом две цепи ДНК расходятся; второй - отжиг, или присоединение праймеров при 50-65 °С; третий - элонгация, или полимеризация при 68-72 °С, при этом ДНК-полимераза осуществляет комплементарное достраивание цепей ДНК-матрицы с помощью четырех видов нуклеотидов. В результате одного цикла происходит удвоение искомого генетического материала. Образовавшиеся в первом цикле цепи ДНК служат матрицами для второго цикла и т. д. После первого цикла амплифицируется только фрагмент между двумя праймерами. Таким образом, идет удвоение числа копий амплифицируемого участка, что позволяет за 25-40 циклов насинтезировать миллионы (2 n) фрагментов ДНК - количество, достаточное для индикации их различными методами (методом гибридизационных зондов, содержащих определенную метку, электрофорезом и т. д.). Чаще для этой цели используют метод электрофореза в агарозном геле с окрашиванием бромистым этидием.

В ПЦР из участков ДНК возбудителя используют праймеры, которые имеют уникальную последовательность нуклеотидов, характерных только для определенного возбудителя.

Методика постановки ПЦР сводится к следующему: из исследуемого материала выделяют ДНК-матрицу; в пробирке соединяют выделенную ДНК с амплификационной смесью, в которую входят ДНК-полимераза, все 4 вида нуклеотидов, 2 вида праймеров, MgCl, буфер, деионизированная вода и минеральное масло. Затем пробирки помещают в амплификатор, и проводят амплификацию в автоматическом режиме по заданной программе, соответствующей виду возбудителя. Результаты регистрируют чаще методом электрофореза в 1-2%-ном агарозном геле в присутствии бромистого этидия, который соединяется с фрагментами ДНК и выявляется в виде светящихся полос при облучении геля УФ-лучами на трансиллюминаторе. Все процедуры ПЦР занимают 1-2 рабочих дня.

С целью повышения специфичности и чувствительности ПЦР применяют различные варианты: гнездовую ПЦР; ПЦР с «горячим стартом» с использованием парафиновой прослойки или блокады активных центров полимеразы моноклональными антителами. Кроме того, некоторые фирмы выпускают лиофилизированные наборы реагентов для проведения амплификации ДНК, которые позволяют ускорить процесс проведения ПЦР и уменьшить возможность появления ложноположительных результатов.

В настоящее время внедряется новая технология ПЦР-ПЦР в реальном времени (Real-Time PCR). Ее принципиальная особенность - мониторинг и количественный анализ накопления продуктов полимеразной цепной реакции и автоматическая регистрация и интерпретация полученных результатов. Этот метод не требует стадии электрофореза, что позволяет снизить предъявляемые к ПЦР требования лаборатории. ПЦР в реальном времени используют флуоресцентно-меченые олигонуклеотидные зонды для детекции ДНК в процессе ее амплификации. ПЦР в реальном времени позволяет провести полный анализ пробы в течение 20-60 мин и теоретически способа детективировать даже одну молекулу ДНК или РНК в пробе.

Система детекции продукта в полимеразной цепной реакции «real-time» (мониторинговая ПЦР) позволяет цикл за циклом следить за накоплением амплифицированной ДНК. Система включает и себя олигонуклеотидный зонд, который способен присоединяться (гибридизироваться) к внутреннему сегменту ДНК-мишени. На 5′-конце зонд помечен флуоресцентным красителем-репортером (reporter dye), а на 3′-конце - блокатором (quencher dye). По мере накопления продукта ПЦР зонд гибридизируется к нему, однако свечения не происходит из-за близости между репортером и блокатором. В результате копирования последовательности полимераза достигает 5′-конца зонда. 5’-3′-экзонуклеазная активность полимеразы отсоединяет флуоресцентную метку с 3′-конца пробы, тем самым освобождая флуоресцирующий репортер от его связи с блокатором сигнала, что и приводит к увеличению флуоресценции. Уровень флуоресценции, таким образом, пропорционален количеству специфичного продукта реакции. Важно, что результаты ПЦР регистрируются по наличию флуоресценции в закрытых пробирках и, таким образом, решается еще одна из основных проблем этого метода - проблема контаминации ампликонами.

Достоинства ПЦР: быстрота анализа; высокие чувствительность и специфичность; минимальное количество исследуемого материала; простота в исполнении и возможность полной автоматизации.

Ввиду того что чувствительность ПЦР может достигать до детекции одной копии ДНК-матрицы, существует высокая степень опасности получения ложноположительных результатов. Поэтому генно-диагностической лабораторией при постановке ПЦР необходимо неуклонно выполнять специальные требования к планировке и режиму работы.

ПЦР является одним из дополняющих методов, существующих в вирусологической диагностике. Эта реакция очень важна для диагностики вирусных инфекций, когда вирусные антигены или вирусспецифические антитела не могут быть обнаружены и когда присутствие вирусной нуклеиновой кислоты может быть единственным свидетельством заражения, особенно при латентно протекающих и смешанных инфекциях.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .


ПРИНЦИП МЕТОДА (молекулярно-биологическая основа)

Среди большого многообразия гибридизационных методов анализа ДНК, метод ПЦР наиболее широко используется в клинической лабораторной диагностике.

Принцип метода полимеразной цепной реакции (ПЦР) (Polymerase chain reaction (PCR)) был разработан Кэри Мюллисом (фирма “Cetus”, США) в 1983г. и в настоящее время широко используется как для научных исследований, так и для диагностики в практическом здравоохранении и службе Госсанэпиднадзора (генотипирование, диагностика инфекционных заболеваний).

В основе метода ПЦР лежит природный процесс - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы. Эта реакция носит название репликации ДНК.

Естественная репликация ДНК включает в себя несколько стадий:

1) Денатурация ДНК (расплетение двойной спирали, расхождение нитей ДНК);

2) Образование коротких двухцепочечных участков ДНК (затравок, необходимых для инициации синтеза ДНК);

3) Синтез новой цепи ДНК (комплементарное достраивание обеих нитей)

Данный процесс можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей инфекционных заболеваний.

Открытие термостабильной ДНК-полимеразы (Taq-полимеразы) из термофильных бактерий Thermis aquaticus , оптимум работы которой находится в области 70-72°С, позволило сделать процесс репликации ДНК циклическим и использовать его для работы in vitro. Создание программируемых термостатов (амплификаторов), которые по заданной программе осуществляют циклическую смену температур , создало предпосылки для широкого внедрения метода ПЦР в практику лабораторной клинической диагностики. При многократном повторении циклов синтеза происходит экспоненциальное увеличение числа копий специфического фрагмента ДНК, что позволяет из небольшого количества анализируемого материала, который может содержать единичные клетки микроорганизмов получить достаточное количество ДНК копий для идентификации их методом электрофореза.

Комплементарное достраивание цепи начинается не в любой точке последовательности ДНК, а только в определеннных стартовых блоках- коротких двунитевых участках. При присоединении таких блоков к специфическим участкам ДНК можно направить процесс синтеза новой цепи только в этом участке, а не по всей длине ДНК цепи. Для создания стартовых блоков в заданных участках ДНК используют две олигонуклеотидные затравки (20 нуклеотидных пар), называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними.

Таким образом, ПЦР представляет собой многократное увеличение числа копий (амплификация) специфического участка ДНК катализируемое ферментом ДНК- полимеразой.

Для проведения амплификации необходимы следующие компоненты:

Смесь дезоксинуклеотидтрифосфатов (дНТФ) (смесь четырех дНТФ, являющихся материалом для синтеза новых комплементарных цепей ДНК)

Фермент Taq-полимераза (термостабильная ДНК-полимераза, катализирующая удлиннение цепей праймеров путем последовательного присоединения нуклеотидных оснований к растущей цепи синтезируемой ДНК).

Буферный раствор
(реакционная среда, содержащая ионы Mg2+, необходимые для поддержания активности фермента)
Для определения специфических участков генома РНК-содержащих вирусов, сначала получают ДНК-копию с РНК-матрицы, используя реакцию обратной транскрипции (RT), катализируемую ферментом ревертазой (обратной транскриптазой).

Для получения достаточного количества копий искомого характеристического фрагмента ДНК амплификация включает несколько (20-40) циклов.



Каждый цикл амплификации включает 3 этапа, протекающих в различных температурных режимах

1 этап: Денатурация ДНК (расплетение двойной спирали). Протекает при 93-95°C в течение 30-40 сек.

2 этап: Присоединение праймеров (отжиг). Присоединение праймеров происходит комплементарно к соответствующим последовательностям на противоположных цепях ДНК на границах специфического участка. Для каждой пары праймеров существет своя температура отжига, значения которой располагаются в интервале 50-65°С. Время отжига -20-60 сек.

3 этап: Достраивание цепей ДНК. Комплементарное достраивание цепей ДНК происходит от 5’-конца к 3’-концу цепи в противоположных направлениях, начиная с участков присоединения праймеров. Материалом для синтеза новых цепей ДНК служат добавляемые в раствор дезоксирибонуклеотидтрифосфаты (дНТФ). Процесс синтеза катализируется ферментом термостабильной ДНК-полимеразой (Taq-полимеразой) и проходит при температуре 70-72°С. Время протекания синтеза - 20-40 сек.






Образовавшиеся в первом цикле амплификации новые цепи ДНК служат матрицами для второго цикла амплификации, в котором происходит образование искомого специфического фрагмента ДНК (ампликона). (см.рис.2). В последующих циклах амплификации ампликоны служат матрицей для синтеза новых цепей. Таким образом происходит накопление ампликонов в растворе по формуле 2n, где n-число циклов амлификации. Поэтому, даже если в исходном растворе первоначально находилась только одна двухцепочечная молекула ДНК, то за 30-40 циклов в растворе накапливается около 108 молекул ампликона. Этого количества достаточно для достоверной визуальной детекции этого фрагмента методом электрофореза в агарозном геле. Процесс амплификации проводится в специальном программируемом термостате (амплификаторе), который по заданной программе автоматчески осуществляет смену температур согласно числу циклов амплификации.

СТАДИИ ПРОВЕДЕНИЯ ПЦР - АНАЛИЗА


В основе метода ПЦР, как инструмента лабораторной диагностики инфекционных заболеваний лежит обнаружение небольшого фрагмента ДНК возбудителя (несколько сот пар оснований), специфичного только для данного микроорганизма, с использованием полимеразной цепной реакции для накопления искомого фрагмента.
Методика проведения анализа с использованием метода ПЦР включает три этапа:

1. Выделение ДНК (РНК) из клинического образца


2. Амплификация специфических фрагментов ДНК
3. Детекция продуктов амплификации

Выделение ДНК (РНК)
На данной стадии проведения анализа клиническая проба подвергается специальной обработке, в результате которой происходит лизис клеточного материала, удаление белковых и полисахаридных фракций , и получение раствора ДНК или РНК, свободной от
ингибиторов и готовой для дальнейшей амплификации.
Выбор методики выделения ДНК(РНК) в основном определяется характером обрабатываемого клинического материала.

Амплификация специфических фрагментов ДНК
На данной стадии происходит накопление коротких специфических фрагментов ДНК в количестве, необходимом для их дальнейшей детекции. В большинстве методик определения специфических фрагментов генома используется т.н. “классический вариант направленной ПЦР. Для повышения специфичности и чувствительности анализа в некоторых методиках используется метод “гнездной” (nested) ПЦР, в котором используются 2 пары праймеров (“внешние” - для 1 стадии, и “внутренние” - для 2-ой стадии).

Детекция продуктов амплификации
В большинстве методик на данном этапе проводится разделение смеси продуктов амплификации, полученной на 2-ой стадии, методом горизонтального электрофореза в агарозном геле. До проведения электрофоретического разделения, к амплификационной смеси добавляется раствор бромистого этидия, образущий с двухцепочечными фрагментами ДНК прочные соединения внедрения. Эти соединения под действием УФ-облучения способны флуоресцировать, что регистрируется в виде оранжево-красных светящихся полос после электрофоретического разделения амплификационной смеси в агарозном геле.

В качестве альтернативы электрофоретическому методу детекции, имеющему некоторые недостатки: субъективность чтения результатов, ограничения по определению ДНК различных микроорганизмов в одной реакции, могут быть предложены гибридизационные схемы детекции. В этих схемах образующийся в результате амплификации фрагмент ДНК гибридизуется (образует 2-х цепочечные комплексы - "гибриды") со специфическим олигонуклеотидным зондом. Регистрация таких комплексов может быть проведена колориметрически или флуориметрически. В НПФ "Литех" созданы наборы для детекции на основе гибридизации с флуориметрической регистрацией результатов

ПРЕИМУЩЕСТВА МЕТОДА ПЦР как метода диагностики инфекционных заболеваний:

- Прямое определение наличия возбудителей

Многие традиционные методы диагностики, например иммуноферментный анализ, выявляют белки-маркеры, являющиеся прдуктами жизнедеятельности инфекционных агентов, что дает лишь опосредованное свидетельство наличия инфекции. Выявление специфического участка ДНК возбудителя методом ПЦР дает прямое указание на присутствие возбудителя инфекции.



- Высокая специфичность

Высокая специфичность метода ПЦР обусловлена тем, что в исследуемом материале выявляется уникальный, характерный только для данного возбудителя фрагмент ДНК. Специфичность задается нуклеотидной последовательностью праймеров, что исключает
возможность получения ложных результатов, в отличие от метода иммуноферментного анализа, где нередки ошибки в связи с перекрестно-реагирующими антигенами.

- Высокая чувствительность

Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими,
микроскопическими) это сделать невозможно. Чувствительность ПЦР-анализа составляет 10-1000 клеток в пробе (чувствительность иммунологических и микроскопических тестов - 103-105 клеток).

-Универсальность процедуры выявления различных возбудителей

Материалом для исследования методом ПЦР служит ДНК возбудителя. Метод основан на выявлении фрагмента ДНК или РНК, являющегося специфичным для конкретного организма. Сходство химического состава всех нуклеиновых кислот позволяет применять унифицированные методы проведения лабораторных исследований. Это дает возможность диагносцировать несколько возбудителей из одной биопробы. В качестве исследуемого материала могут использоваться различные биологические выделения (слизь, моча, мокрота), соскобы эпителиальных клеток, кровь, сыворотка.

- Высокая скорость полученоя результата анализа
Для проведения ПЦР-анализа не требуется выделение и выращивание культуры возбудителя, что занимает большое количество времени. Унифицированный метод обработки биоматериала и детекции продуктов реакции, и автоматизация процесса амплификации дают возможность провести полный анализ за 4-4.5 часа.

Следует отметить, что методом ПЦР возможно выявление возбудителей не только в клиническом материале, полученном от больного, но и в материале, получаемом из объектов внешней среды (вода, почва и т.д.)

ПРИМЕНЕНИЕ МЕТОДА ПЦР В ПРАКТИЧЕСКОМ ЗДРАВООХРАНЕНИИ

Использование метода ПЦР для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы имеет колоссальное значение для решения многих проблем микробиологии и эпидемиологии. Применение этого метода также способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний.

Наиболее эффективно и экономически обоснованно использование метода в:

урогинекологической практике - для выявления хламидиоза, уреаплазмоза, гонореи, герпеса, гарднереллеза, микоплазменной инфекции;

в пульмонологии - для дифференциальной диагностики вирусных и бактериальных пневмоний, туберкулеза;

в гастроэнтерологии - для выявления геликобактериоза;

в клинике инфекционных заболеваний - в качестве экспресс-метода диагностики сальмонеллеза, дифтерии, вирусных гепатитов В,С и G;

в гематологии - для выявления цитомегаловирусной инфекции, онковирусов.

С.В. Поспелова, М.В. Кузнецова

Полимеразная цепная реакция


С.В. Поспелова – канд. мед. наук, доцент кафедры микробиологии, вирусологии и иммунологии, М.В. Кузнецова – канд. биол. наук, сотрудник ИЭГМ УрО РАН

Поспелова, С.В.

Предназначены для самостоятельной работы студентов всех факультетов: лечебного, педиатрического, медико-профилактического, стоматологического и факультета высшего сестринского образования (ФВСО) медицинской академии.

Рецензент:

зав. кафедрой биологии, экологии и медицинской генетики ПГМА, профессор А.Б. Виноградов

Печатается по решению центрального координационного
методического совета ГОУ ВПО ПГМА
им. ак. Е.А. Вагнера Росздрава

УДК 616-078.33

© Поспелова С.В., Кузнецова М.В., 2007

© ГОУ ВПО ПГМА им. ак. Е.А. Ваг­нера Росздрава, 2007


Полимеразная цепная реакция в клинической
микробиологической диагностике

Современная медицина успешно использует достижения естественных наук, интенсивно применяет новые технологии для диагностики и лечения заболеваний. В последнее время к традиционным микробиологическим и иммунологическим методам лабораторной диагностики инфекционных заболеваний добавились новые, основанные на использовании молекулярно-генетических технологий. Применение этих методов не только в научных целях, но и в практической лабораторной диагностике стало возможным в немалой степени благодаря созданию в середине 80-х годов процесса искусственного многократного копирования ДНК и дальнейшему стремительному развитию этой технологии, в настоящее время известной как полимеразная цепная реакция (ПЦР). Менее чем за 15 лет своего существования ПЦР сделала рутинным анализ специфических ДНК-последовательностей многих пато­генных микроорганизмов. Универсальность, высокая чувствительность и относительная простота исполнения сделали метод ПЦР незаменимым для решения различных задач клинической диагностики, таких как прямое обнаружение и идентификация возбудителей заболеваний, молекулярное типирование и исследование свойств патогенных микроорганизмов, анализ мутаций, связанных с генетическими заболеваниями у человека, идентификация личности человека.



Что такое ПЦР?

Полимеразная цепная реакция (ПЦР) - искусственный процесс многократного копирования (амплификации) специфической последовательности ДНК, осуществляемый in vitro (рис. 1). Копирование ДНК при ПЦР осуществляется специальным ферментом - ДНК-полимеразой, как и в клетках живых организмов. ДНК-полимераза, двигаясь по одиночной цепи ДНК (матрице), синтезирует комплементарную ей последовательность ДНК. Важно, что ДНК-полимераза не может начать синтез цепи ДНК «с нуля», ей необходима короткая «затравочная» цепь РНК или ДНК, к которой она может начать присоединять нуклеотиды. Основной принцип ПЦР состоит в том, что реакция полимеризации (синтеза полимерной цепи ДНК из мономерных нуклеотидных звеньев) инициируется специфическими праймерами (короткими фрагментами «затравочной» ДНК) в каждом из множества повторяющихся циклов. Специфичность ПЦР определяется способностью праймеров «узнавать» строго определенный участок ДНК и связываться с ним согласно принципу молекулярной комплементарности.

В обычной реакции ПЦР используется пара праймеров, которые «ограничивают» амплифицируемый участок с двух сторон, связываясь с противоположными цепями ДНК-матрицы. Для многократного увеличения количества копий исходной ДНК нужна цикличность реакции. Как правило, каждый из последовательно повторяющихся циклов ПЦР состоит из трех этапов:

1) денатурации, или «плавления» двуцепочечной ДНК: перед началом реакции ДНК-мишень является двуцепочечной, при температуре 94-95 0 С комплиментарные цепи ДНК расходятся - переходят в одноцепочечное состояние;

2) связывания (отжига) праймеров: при температуре, оптимальной для выбранных праймеров, происходит их связывание с комплиментарным участком матричной ДНК;

3) элонгации, или удлинения цепи: ДНК-полимераза присоединяет нуклеотиды к праймерам, синтезируя новые цепи ДНК, которые становятся мишенью для праймеров в последующих циклах ПЦР.

Смена этапов каждого цикла осуществляется путем изменения температуры реакционной смеси (см. рис. 1).

Рис. 1. Основные этапы цикла ПЦР

Сначала праймеры могут связаться только с определенной последовательностью исходной ДНК, но в последующих циклах они связываются с копиями этой последовательности, синтезированными в предыдущих циклах. При этом количество основного продукта ПЦР (копии последовательности ДНК, ограниченной праймерами) теоретически удваивается в каждом цикле. Если на начальном цикле в исследуемом материале была только одна ДНК-мишень, после первого цикла будет уже две копии, после двух циклов – 4 копии, результатом третьего цикла будет 8 копий, а тридцать пятого – уже 68 биллионов копий (рис. 2).

Рис. 2. Процесс многократного копирования
ДНК-мишени в ходе последовательно
сменяющихся циклов

Основным методом анализа продуктов реакции, который традиционно применяется во многих лабораториях для обнаружения амплифицированной ДНК и определения ее размера, является метод гель-электрофореза с последующим окрашиванием красителем, специфичным к ДНК, например бромистым этидием (рис. 3).

Контроль – различные фрагменты ДНК с известным количеством составляющих их нуклеотидов. Известно, что дистанция между различными фрагментами имеет логарифмическую зависимость от их размера, массы. Линия 1 – обнаружены ПЦР-фрагменты длиной приблизительно 1850 оснований. Линия 2 и 4 – фрагменты длиной около 800 оснований.

Рис. 3. Анализ продуктов реакции методом
гель-электрофореза

Линия 3 – не выявлены искомые фрагменты, отрицательный результат реакции. Линия 5 – множественные линии сформировались потому, что праймеры оказались комплиментарны к нескольким фрагментам ДНК различной длины: около 550, 800 и 1500 оснований.

Усовершенствование технологии ПЦР

Первоначально для осуществления ПЦР использовали обычные ДНК-полимеразы, которые подвергались температурной инактивации в каждом цикле на этапе денатурации ДНК. Полимеразу приходилось многократно добавлять в реакционную смесь, что было довольно трудоемко и не позволяло автоматизировать процесс.

В реакции используются термостабильные ДНК-полимеразы, выдерживающие высокую температуру на всех этапах цикла ПЦР в течение нескольких десятков циклов. Количество коммерчески доступных термостабильных ДНК-полимераз, отличающихся некоторыми своими свойствами, достаточно велико. Наиболее часто используется Taq-полимераза, первоначально выделенная из термофильного микроорганизма Thermus aquaticus. Другие полимеразы чаще применяются для особых приложений ПЦР. Современные коммерческие препараты термостабильных полимераз обеспечивают, как правило, стабильную воспроизводимую активность, что позволяет использовать технологию ПЦР в стандартной лабораторной практике.

Техническое оформление смены температуры реакционной смеси также стремительно развивалось в последнее время. Сначала ПЦР осуществлялась при помощи трех водяных бань, настроенных на разную температуру: для денатурации ДНК, отжига праймеров и полимеризации. Пробирки переносились из одной водяной бани в другую «по кругу», благодаря чему происходила смена температуры на разных этапах цикла. Существовали и варианты приборов, где в водяную баню, в которой находились пробирки с реакционной смесью, поочередно подавалась вода разной температуры. Смена циклов в этих случаях занимала много времени, и процесс плохо поддавался автоматизации. Для осуществления ПЦР в основном используются приборы (термоциклеры), которые изменяют температуру автоматически на основе заданной программы. В термоциклерах пробирки с реакционной смесью помещаются в металлический блок, температура которого изменяется с большой скоростью, что сокращает продолжительность каждого цикла ПЦР.

Современные термоциклеры приспособлены для использования специальных тонкостенных пластиковых пробирок для реакционной смеси, что позволяет ускорить теплообмен между блоком прибора и реакционной смесью и в конечном итоге дополнительно сократить время проведения реакции.

Таким образом, стандартная ПЦР может быть осуществлена за 1-3 ч. Многие приборы позволяют программировать специальные усложненные температурные профили, необходимые для специфических модификаций процесса ПЦР.

Параллельно с усовершенствованием технологии ПЦР развивались и методы анализа продуктов реакции. Метод гель-электрофореза с последующим окрашиванием красителем, специфичным к ДНК, например бромистым этидием, традиционно применяется во многих лабораториях для обнаружения амплифицированной ДНК и определения ее размера. Использование гибридизации с внутренними ДНК-зондами позволяет в ряде случаев значительно повысить чувствительность и специфичность детектирования ПЦР-продуктов. Благодаря отсутствию необходимости в подготовке и проведении электрофоретического разделения, возможности автоматизации для анализа большого количества образцов и использования нерадиоактивного формата детектирования, этот метод становится все более распространенным. В некоторых случаях применение специальных флюоресцентных «маркеров» позволяет контролировать проведение амплификации или детектирование конечных продуктов ПЦР непосредственно в реакционной пробирке.

Использование ПЦР
в медицинской микробиологии

Среди множества различных направлений клинической диагностики медицинская микробиология занимает, пожалуй, лидирующее место по количеству и разнообразию приложений, использующих технологию ПЦР. Внедрение в практику этого метода наряду с серологической диагностикой существенно расширило возможности современной клинической микробиологии, основу которой до сих пор составляют методы выделения и культивирования микроорганизмов на искусственных питательных средах или в культуре клеток.

Возможности и ограничения традиционных
методов культивирования

Традиционный для микробиологических лабораторий культуральный метод диагностики, как правило, хорошо оправдывает себя для выявления и исследования таких свойств, как чувствительность к антибиотикам, вирулентность легкокультивируемых микроорганизмов. Однако некоторые микроорганизмы (пневмококки, гемофилы, нейссерии, мико­плазмы, облигатные анаэробы и др.) могут быть чрезвычайно чувствительными к условиям забора клинического материала, транспортировки и культивирования, наличию специальных факторов роста или способны к размножению in vitro только в культуре клеток (вирусы, хламидии, риккетсии).

Медленный рост на искусственных средах таких микроорганизмов, как микобактерии и грибы, является еще одним естественным ограничением, связанным с использованием культурального метода для диагностики этих микроорганизмов. Кроме того, работа с живыми культурами выделенных возбудителей, причем не только особо опасных, но иногда и условно-патогенных, может представлять угрозу для здоровья персонала лаборатории.

Среди возбудителей болезней человека известны также и некультивируемые виды бактерий, например Mycobacterium leprae, Treponema pallidum, и многие виды вирусов, включая вирусы папилломы человека и гепатита С, попытки выращивания которых в клеточной культуре пока остаются безуспешными. Наконец, даже при успешном культивировании существует необходимость последующей идентификации выделенных микроорганизмов.

Традиционные микробиологические методы идентификации основаны на использовании различных фенотипических тестов, таких как выявление специфической ферментативной активности, способности метаболизировать сахара или поддерживать рост на средах с селективными добавками. Сложность стандартизации условий подобных тестов, а также естественная фенотипическая вариабельность, присущая многим микроорганизмам, могут быть причиной неправильной идентификации.

Использование ПЦР для прямой диагностики
и идентификации возбудителей
инфекционных заболеваний

В тех случаях, когда использование культуральных методов является проблематичным или связано с недостаточной диагностической эффективностью, возможность замены биологической амплификации (то есть роста на искусственных средах) на ферментативное удвоение нуклеиновых кислот in vitro с помощью ПЦР представляется особенно привлекательной. Существуют различные подходы к использованию ПЦР для диагностики возбудителей инфекций. Наиболее распространенный вариант ПЦР (specific PCR) предусматривает использование праймеров, комплементарных специфической последовательности ДНК, характерной для строго определенного вида микроорганизма. Например, ПЦР-амплификация специфического участка гена, кодирующего главный белок наружной мембраны (МОМР) Chlamydia trachomatis, в сочетании с нерадиоактивной гибридизацией для детектирования продуктов реакции позволяет обнаружить единичные копии хламидийной ДНК в исследуемых образцах. При этом ПЦР значительно превосходит по диагностической эффективности культивирование и методы прямого обнаружения хламидийного антигена (микроиммунофлюоресценцию и иммуноферментный анализ), традиционно используемые для выявления С. trachomatis.

Имеется также возможность использования сразу нескольких пар видоспецифических праймеров в одной реакционной пробирке для одновременной амплификации ДНК различных возбудителей. Такая модификация получила название множественной ПЦР (multiplex PCR). Множественная ПЦР может быть использована для выявления этиологической роли различных микроорганизмов, вызывающих заболевания определенного типа. Так, например, описаны варианты применения множественной ПЦР для одновременного обнаружения двух (С. trachomatis и N. gonorrhoeae при заболеваниях урогенитального тракта) или даже четырех возбудителей (И. influenzae, S. pneumoniae, M. catarrhalis и A. otitidis при хроническом гнойном отите).

Альтернативный подход в ПЦР-диагностике связан с использованием универсальных праймеров, которые позволяют амплифицировать фрагменты генов, присутствующих у всех микроорганизмов определенной таксономической группы. Количество видов, которые могут быть выявлены с помощью этого метода, может ограничиваться как рамками небольших систематических групп (рода, семейства), так и крупных таксонов на уровне порядка, класса, типа. В последнем случае мишенью для ПЦР чаще всего являются рибосомные гены (16S и 23S рРНК), которые имеют сходную структуру у различных прокариотических микроорганизмов.

Использование праймеров, комплементарных консервативным участкам этих генов, позволяет амплифицировать ДНК большинства видов бактерий. Полученные в результате ПЦР фрагменты рибосомных генов могут быть затем проанализированы с помощью различных лабораторных методов с целью идентификации бактерий, которым они принадлежат. Наиболее точным методом «молекулярной» идентификации является определение полной нуклеотидной последовательности (секвенирование) амплифицированной ДНК и сравнение ее с соответствующими последовательностями известных видов.

Несмотря на наличие автоматизированных систем, использующих описанный принцип идентификации, на практике обычно используются менее трудоемкие и дорогостоящие методы, которые тем не менее позволяют достоверно выявлять определенные различия в последовательности ДНК-фрагментов. Наиболее распространенными являются методы, основанные на анализе расположения в ДНК участков расщепления ферментами-рестриктазами (метод ПДРФ (RFLP) – полиморфизм длины рестрикционных фрагментов ), или на определении электрофоретической подвижности ДНК в одноцепочечной форме (метод SSCP-одноцепочечный конформационный полиморфизм ).

ПЦР с использованием универсальных праймеров может применяться как для идентификации выделенных в чистой культуре микроорганизмов, так и для прямой диагностики широкого спектра возбудителей непосредственно в клинических образцах. Следует однако отметить, что чувствительность ПЦР «широкого спектра», как правило, ниже по сравнению с «видоспецифическими» тест-системами. Кроме того, ПЦР с универсальными праймерами обычно не используется для исследования образцов, в которых может находиться большое количество различных микроорганизмов, из-за трудности анализа продуктов реакции, полученных в результате амплификации ДНК разных видов.

Методы молекулярного типирования
микроорганизмов на основе ПЦР

ПЦР широко используется не только для диагностики и идентификации, но и для субвидового типирования и анализа генетического родства (клональности) выделенных штаммов микроорганизмов, особенно при проведении эпидемиологических исследований. По сравнению с традиционными фенотипическими методами (био-, фаго- и серотипированием) генотипирование на основе ПЦР отличается универсальностью, более глубоким уровнем дифференциации, возможностью использования количественных методов для оценки идентичности штаммов и высокой воспроизводимостью. Описано много методов генотипирования, которые можно рассматривать как производные технологии ПЦР.

Несмотря на разнообразие методов ПЦР-типирования, общим для большинства из них является использование гель-электрофореза для разделения фрагментов ДНК разной длины, полученных от каждого отдельного штамма. При этом сравнительный анализ индивидуальных электрофоретических профилей, проводимый визуально или с помощью компьютера, позволяет оценить степень генетического родства исследуемых штаммов.

Использование ПЦР для выявления лекарственной
устойчивости у микроорганизмов

В последнее время ПЦР все чаще используется для исследования различных свойств патогенных микроорганизмов, в частности для выявления устойчивости отдельных видов возбудителей к определенным лекарственным препаратам. Как правило, использование ПЦР для определения чувствительности микроорганизмов является целесообразным лишь в тех случаях, когда традиционные фенотипические методы неприменимы или недостаточно эффективны. Например, опре­деление чувствительности Mycobacterium tuberculosis к проти­вотуберкулезным препаратам с помощью культуральных методов занимает обычно от 4 до 8 нед. Кроме того, результаты фенотипических тестов в подобных случаях могут быть искажены в связи со снижением активности антимикробных препаратов в процессе длительного культивирования микроорганизмов. Исследование молекулярных механизмов лекарственной устойчивости М. tuberculosis и некоторых других возбудителей позволило разработать методы на основе ПЦР для быстрого выявления генетических маркеров резистентности.

Для подобного анализа обычно используется ДНК или РНК возбудителя, выделенного в чистой культуре. Однако в некоторых случаях имеется возможность прямого ПЦР-анапиза на антибиотикорезистентность без предварительного культивирования возбудителя. Исследуемый образец клинического материала при этом используется как источник ДНК-мишени для ПЦР, а откопированный ПЦР-продукт подвергается анализу с целью выявления мутаций, связанных с антибиотикорезистентностью. Разработан, например, метод, позволяющий с помощью ПЦР обнаружить у пациентов, страдающих туберкулезным менингитом, устойчивость возбудителя к рифампицину.

Существуют, однако, естественные ограничения для использования генетических методов оценки лекарственной устойчивости микроорганизмов:

Данные о конкретных генетических механизмах резистентности могут отсутствовать;

Резистентность к определенным препаратам часто бывает связана с различными механизмами и мутациями в различных генах, которые независимо влияют на фенотип.

Например, резистентность грамотрицательных бактерий к аминогликозидным антибиотикам может быть вызвана продукцией различных аминогликозидмодифицирующих ферментов или изменением проницаемости клеточной стенки. В этом случае результаты ПЦР-анализа, который всегда характеризует строго определенный специфический участок ДНК, не могут служить основанием для оценки чувствительности микроорганизма в целом.

Кроме того, отсутствие международных стандартов и рекомендаций по использованию ПЦР для определения чувствительности к антимикробным препаратам является дополнительным фактором, ограничивающим возможность широкого применения этого подхода в практической диагностике.

Полимеразная цепная реакция (ПЦР) - это метод биохимической технологии в молекулярной биологии, проводящийся с целью увеличения одной или нескольких копий фрагментов ДНК на несколько степеней, что позволяет создать от нескольких тысяч до миллионов копий определенной последовательности ДНК.


Разработанный в 1983 году Кэри Муллисом, метод ПЦР в настоящее время является распространенным и зачастую незаменимым методом, использующимся в медицинских и биологических исследовательских лабораториях для множества различных приложений. Они включают клонирование ДНК для секвенирования, филогению на основе ДНК, или функциональный анализ генов; диагностику наследственных заболеваний; выявление генетических отпечатков пальцев (используется в отраслях судебной медицины и в проведении теста на отцовство), а также выявление и диагностику инфекционных заболеваний. В 1993 году, Муллис был удостоен Нобелевской премии по химии вместе с Майклом Смитом по их работе над ПЦР .

Метод основан на термоциклировании, состоящем из повторяющихся циклов нагрева и охлаждения реакции для денатурации и репликации ДНК ферментами. Праймеры, (короткие фрагменты ДНК), содержащие последовательности, комплементарные с целевым участком наряду с ДНК-полимеразой (на основе чего метод получил название), являются ключевыми компонентами для запуска избирательной и повторной амплификации. В процессе ПЦР, сама синтезированная ДНК используется в качестве матрицы для репликации, приводя в движение цепную реакцию, в которой ДНК-матрица амплифицируется в геометрической прогрессии. ПЦР может значительно модифицироваться для выполнения широкого спектра генетических манипуляций.

Почти все ПЦР-приложения используют термостабильную ДНК-полимеразу, такую как Taq-полимераза, фермент , первоначально выделенный из бактерии Thermus aquaticus . Эта ДНК-полимераза ферментативно собирает новую цепь ДНК из блоков, составляющих ДНК - нуклеотидов, используя одноцепочечную ДНК в качестве матрицы и олигонуклеотиды ДНК (также называемые праймерами ДНК), которые необходимы для инициации синтеза ДНК. Подавляющее большинство методов ПЦР применяют термоциклирование, т. е. попеременное нагревание и охлаждение образца ПЦР по определенному ряду температурных этапов. Эти этапы термоциклирования необходимы сначала для физического разделения двух цепей двойной спирали ДНК при высокой температуре в процессе, называемом денатурацией ДНК. При более низкой температуре, каждая цепь будет использоваться в качестве матрицы в синтезе ДНК ДНК-полимеразой для того, чтобы избирательно амплифицировать целевой участок ДНК. Избирательность результатов ПЦР с использованием праймеров, которые являются комплементарными с участком ДНК - мишенью для амплификации при определенных условиях термоциклирования.

Принципы ПЦР диагностики

ПЦР используется для амплификации определенного участка цепи ДНК (ДНК-мишень). Большинство методов ПЦР обычно амлифицируют фрагменты ДНК до ~ 10000 пар оснований (кб), хотя некоторые методы позволяют увеличивать фрагменты до 40 кб в размере. Реакция производит ограниченное количество конечного амплифицированного продукта, который регулируется имеющимися реактивами в реакции и обратной связью-ингибированием продуктов реакции.

Основной набор ПЦР требует нескольких компонентов и реактивов. Они включают:

  • ДНК-матрицу , содержащую целевой участок ДНК, который требуется амплифицировать.
  • Два праймера, комплементарные 3"-концам каждой из смысловой и антисмысловой цепей ДНК-мишени.
  • Taq-полимераза или иная ДНК-полимераза, действующая при оптимальной температуре около 70 ° C.
  • Дезоксинуклеозидтрифосфаты (дНТФ; трифосфатные группы, содержащие нуклеотиды), строительные блоки, из которых ДНК-полимераза синтезирует новую цепь ДНК.
  • Буферный раствор , обеспечивающий подходящие химические условия для оптимальной активности и стабильности ДНК-полимеразы.
  • Двухвалентные катионы, ионы магния или марганца; обычно используется Mg2 +, но также может использоваться и Mn2 + для ПЦР-опосредованного мутагенеза ДНК, так как более высокие концентрации Mn2 + увеличивают частоту ошибок в процессе синтеза ДНК.
  • Одновалентные катионы ионов калия.

ПЦР обычно проводится в реакционном объеме 10-200 мкл в небольших реакционных пробирках (объемом 0.2-0.5 мл) в термоциклере-амплификаторе. Амплификатор нагревает и охлаждает реакционные пробирки для достижения температур, необходимых на каждом этапе реакции. Многие современные амплификаторы используют эффект Пельтье, который позволяет нагревать и охлаждать блок с ПЦР-пробирками просто путем изменения направления электрического тока. Тонкостенные реакционные пробирки способствуют благоприятной теплопроводности для обеспечения быстрого теплового равновесия. Старые амплификаторы, у которых отсутствует нагреваемая крышка, требуют слоя масла на поверхности реакционной смеси или шарика воска в пробирке.

Порядок процедуры

Как правило, ПЦР состоит из серий 20-40 повторяющихся изменений температуры, называемых циклами, причем каждый цикл обычно состоит 2-3 дискретных температурных этапов, обычно трех. Циклирование зачастую начинается и завершается одним температурным этапом (так называемым ожиданием ) при высокой температуре (> 90 ° C) для окончательного расширения продукта или краткого хранения. Использующиеся температуры и длительность времени их применения в каждом цикле зависит от множества параметров. Они включают в себя фермент, используемый для синтеза ДНК, концентрацию двухвалентных ионов и дНТФ в реакции, и температуру плавления (Tm) праймеров.

  • Этап инициализации: Этот этап состоит из нагрева реакции до температуры 94-96 ° C (или 98 ° C, если используются высоко термостабильные полимеразы), который проводится на 1-9 минут. Этап требуется только для ДНК-полимераз, которым необходима активация теплом, так называемым горячим стартом ПЦР.
  • Этап денатурации: Является первым регулярным событием термоциклирования и состоит из нагревания реакции до 94-98°C в течение 20-30 секунд. Это вызывает расщепление ДНК-матрицы с разрушением водородных связей между комплементарными основаниями и образованием одноцепочечных молекул ДНК.
  • Этап отжига: Температура реакции снижается до 50-65°С в течение 20-40 секунд, что позволяет праймерам связаться с одноцепочечной матрицей ДНК. Обычно температура отжига составляет около 3-5 градусов по Цельсию ниже Tm используемых праймеров. Стабильные водородные связи ДНК-ДНК формируются только, когда последовательность праймера точнее соответствует матрице последовательности. Полимераза связывается с гибридом «праймер-матрица» и начинает синтез ДНК.
  • Этап расширения / элонгации: Температура на этом этапе зависит от используемой ДНК-полимеразы; Taq-полимераза имеет свою оптимальную температуру активности при 75-80°C; обычно используется температура 72°C для этого фермента. На этом этапе ДНК-полимераза синтезирует новую цепь ДНК, комплементарную цепи ДНК-матрицы, добавляя дНТФ, которые являются комплементарными матрице в направлении 5 "к 3", связывая 5"-фосфатную группу дНТФ с 3"-гидроксильной группой в конце образующейся (расширяющейся) ДНК. Время расширения зависит как от используемой ДНК-полимеразы, так и длины фрагмента ДНК, который необходимо амплифицировать. Как правило, при своей оптимальной температуре, ДНК-полимераза полимеризует тысячу оснований в минуту. При оптимальных условиях, т.е. при отсутствии ограничений вследствие ограничивающих субстратов или реактивов, на каждом этапе расширения, количество ДНК-мишени удваивается, что приводит к экспоненциальной (в геометрической прогрессии) амплификации фрагмента ДНК.
  • Финальное удлинение: Это единственный этап, выполняющийся иногда при температуре 70-74°С в течение 5-15 минут после последнего цикла ПЦР для того, чтобы убедиться, что любые оставшиеся одноцепочечные ДНК удлинились полностью.
  • Финальное ожидание: Этот этап при температуре 4-15 ° C в течение неопределенного времени может быть использован для кратковременного сохранения реакции. Чтобы проверить, синтезировала ли ПЦР ожидаемый фрагмент ДНК (также иногда называют «амплимер» или «ампликон»), применяется электрофорез в агарозном геле для разделения продуктов ПЦР по размеру. Размер ПЦР-продуктов определяется путем сравнения с лестницей ДНК (маркером молекулярного веса), которая содержит фрагменты ДНК известного размера, выполняется на геле наряду с ПЦР-продуктами.

Стадии полимеразной цепной реакции

Процесс ПЦР можно разделить на три этапа:

  1. Экспоненциальная амплификация : В течение каждого цикла, количество продукта удваивается (при условии 100% эффективности реакции). Реакция очень чувствительна: необходимо присутствие только незначительного количества ДНК.
  2. Стадия выравнивания : реакция замедляется, так как ДНК-полимераза теряет активность и потребление реактивов, таких как дНТФ и праймеры, заставляет их стать ограничивающими.
  3. Плато : Продукт больше не накапливается из-за истощения реактивов и ферментов.

Оптимизация ПЦР

На практике, ПЦР может пройти не успешно по различным причинам, в частности из-за ее чувствительности к загрязнению, что вызывает амплификацию побочных продуктов ДНК. В связи с этим, был разработан ряд методик и процедур для оптимизации условий ПЦР. Загрязнением посторонней ДНК занимаются лабораторные протоколы и процедуры, которые очищают предварительно ПЦР-смеси от потенциальных ДНК-загрязнителей. Это обычно включает пространственное разделение ПЦР-комплектов от областей для анализа или очистки продуктов ПЦР, использование одноразовой пластиковой посуды и тщательную очистку рабочей поверхности между этапами проведения реакции. Методы конструирования праймеров играют важную роль в улучшении выделения продуктов ПЦР и в избегании образования побочных продуктов, а также использование альтернативных компонентов буфера или полимеразных ферментов может помочь в амплификации длинных или иначе проблемных участков ДНК. Добавление реактивов, таких как формамид, в буферные системы может увеличить специфичность и выделение ПЦР. Симуляция на компьютере теоретических результатов ПЦР (электронная ПЦР) может быть выполнена для оказания помощи в конструировании праймеров.

Применение ПЦР

Селективное выделение ДНК

ПЦР позволяет выделять фрагменты ДНК из геномной ДНК с помощью селективной амплификации конкретного участка ДНК. Это применение ПЦР дополняет многие методы, такие как создание зондов гибридизации для методов «саузерн» или «норзерн-блоттинга» и клонирования ДНК, которые требуют больших количеств ДНК, представляющих собой специфический участок ДНК. ПЦР снабжает эти методы высоким содержанием чистой ДНК, что позволяет выполнить анализ образцов ДНК, даже с небольшим количеством исходного материала.

Другие применения ПЦР включают секвенирование ДНК с целью определения неизвестных ПЦР-амплифицированных последовательностей, в которой один из апмлификационных праймеров может быть использован в секвенировании по Сэнгеру, выделении последовательности ДНК для ускорения технологий рекомбинантной ДНК, включающих вставку последовательности ДНК в плазмиду или генетический материал другого организма. Можно быстро провести скрининг колоний бактерий (кишечной палочки) посредством ПЦР для коррекции конструкции векторной ДНК. ПЦР также можно применять для генетической дактилоскопии; методика, используемая в судебной медицине для идентификации личности или организма путем сравнения экспериментальных ДНК с помощью различных ПЦР - методов.

Некоторые методы ПЦР «отпечатков пальцев» имеют высокую дискриминационную силу и могут использоваться для определения генетических связей между людьми, такими как родитель -ребенок или между братьями и сестрами, и используются в выявлении отцовства. Эта методика также может применяться для определения эволюционных взаимоотношений между организмами.

Амплификация и количественная оценка ДНК

Так как ПЦР увеличивает число копий участков ДНК, которые являются мишенями, ПЦР может применяться для анализа очень малых количеств образца. Зачастую это имеет решающее значение для судебно-медицинской экспертизы, когда доступны только следовые количества ДНК в качестве доказательств. ПЦР также может применяться при анализе древних ДНК, которым десятки тысяч лет. Эти ПЦР-методы были успешно использованы на животных, таких как сорокатысячелетний мамонт, а также на ДНК человека, в приложениях, начиная от анализа египетских мумий до идентификации русского царя.

Количественные методы ПЦР позволяют оценить количество заданной последовательности, присутствующей в образце - метод часто применяется для количественного определения уровня экспрессии гена. ПЦР в реальном времени является признанным инструментом для количественного анализа ДНК, который измеряет накопление ДНК продукта после каждого цикла ПЦР-амплификации.

ПЦР в диагностике заболеваний

ПЦР позволяет провести раннюю диагностику злокачественных заболеваний, таких как лейкемия и лимфома, которая в настоящее время является высоко развитой в исследованиях рака и уже используется в плановом порядке. ПЦР может проводиться непосредственно на геномных образцах ДНК для выявления транслокационно-специфичных злокачественных клеток с чувствительностью, которая, по крайней мере, в 10 000 раз выше, чем у других методов.

ПЦР позволяет также выявлять некультивируемые или медленно растущие микроорганизмы, таких как микобактерии, анаэробные бактерии, и вирусы из культуры ткани и моделей животных. Основанием для ПЦР диагностических приложений в области микробиологии является выявление инфекционных агентов и дифференцировка непатогенных штаммов от патогенных в силу специфических генов.

Вирусная ДНК может также выявляться с помощью ПЦР. Праймеры должны быть специфичными к целевым последовательностям ДНК вируса, и ПЦР может применяться для диагностических анализов ДНК или секвенирования генома вируса. Высокая чувствительность ПЦР позволяет обнаружить вирусы вскоре после инфицирования и даже до начала заболевания. Такое раннее выявление вируса может дать врачам значительные возможности в лечении. Количество вируса («вирусная нагрузка») у пациента также может быть определено количественными методом анализа ДНК на основе ПЦР.

Вариации основных методов полимеразной цепной реакции

  • Аллель-специфичная ПЦР : метод диагностики или клонирования, основанный на однонуклеотидных полиморфизмах (SNP) (отличиях одного основания в ДНК). Требует предварительных знаний о последовательности ДНК, включая различия между аллелями, и использует праймеры, чьи 3"-концы охватывают SNP. ПЦР-амплификация в жестких условиях гораздо менее эффективна в присутствии несоответствия между матрицей и праймером, поэтому успешная амплификация с SNP-специфическим праймером сигнализирует о наличии специфических SNP в последовательности.
  • ПЦР-сборка или сборка циклирования полимеразы (СЦП): искусственный синтез длинных последовательностей ДНК путем проведения ПЦР на резерве длинных олигонуклеотидов с короткими перекрывающимися сегментами. Олигонуклеотиды чередуются между направлениями смысловой и антисмысловой цепей, и перекрывающиеся сегменты определяют порядок ПЦР-фрагментов, тем самым селективно вырабатывая окончательный длинный продукт ДНК.
  • Асимметричная ПЦР : преимущественно амплифицирует одну цепь ДНК в матрице двухцепочечной ДНК. Используется в секвенировании и гибридизационного зондирования, где требуется амплификация только одной из двух комплементарных цепей. ПЦР проводится как обычно, но с большим избытком праймеров для цепи, предназначенной для амплификации. Из-за медленной (в арифметической прогрессии) амплификации в конце реакции после использования ограничивающего праймера, требуются дополнительные циклы ПЦР. Последняя модификация этого процесса, известная как «LATE-PCR» (линейность после экспоненциальной фазы - ПЦР) использует ограничивающий праймер с более высокой температурой плавления (Tm), чем избыток праймера для поддержания эффективности реакции, так как концентрация ограничивающего праймера снижается в середине реакции.
  • Dial-out ПЦР : высоко параллельный метод с целью получения точных молекул ДНК для синтеза генов. Комплексный резерв молекул ДНК модифицируется уникальными фланговыми метками до массивного параллельного секвенирования. Tag-направленные праймеры затем обеспечивают получение молекул с заданной последовательностью с помощью ПЦР.
  • Геликаза-зависимая амплификация: аналогична традиционной ПЦР, но требует постоянную температуру, чем циклирование через циклы денатурации и отжига / расширения. Геликаза ДНК, фермент, который раскручивает ДНК, используется вместо тепловой денатурации.
  • Горячий старт ПЦР : методика, которая снижает неспецифическую амплификацию во время начальной настройки этапов ПЦР. Может выполняться вручную путем нагревания компонентов реакции до температуры денатурации (например, 95 ° C) перед добавлением полимеразы. Были разработаны системы специализированных ферментов, которые ингибируют активность полимеразы при комнатной температуре, либо путем связывания антител, либо в присутствии ковалентно связанных ингибиторов, которые диссоциируются только после высокотемпературной стадии активации. «Горячий старт/холодный финиш» ПЦР достигается с помощью новых гибридных полимераз, которые являются неактивными при температуре окружающей среды и мгновенно активируются при температуре элонгации.
  • ПЦР, специфичная к межмикросателлитным последовательностям (ISSR): ПЦР-метод ДНК-дактилоскопии, который увеличивает число копий участков между простыми повторяющимися последовательностями для получения уникального отпечатка из амплифицированной длины фрагмента.
  • Инвертированная ПЦР широко используется для определения участков последовательности вокруг геномных вставок. Она включает ряд расщеплений ДНК и самостоятельного лигирования, в результате чего образуются известные последовательности на любом конце неизвестной последовательности.
  • ПЦР, опосредованная лигированием: Использует небольшие линкеры ДНК, соединенные с интересующей ДНК и несколькими праймерами, связанные с линкерами ДНК; используется для секвенирования ДНК, метода прогулки по геному, и футпринтинга ДНК.
  • Метилирование-специфическая ПЦР (MSP): разработана Стивеном Бэйлином и Джимом Германом в Школе Медицины Джона Хопкинса, используется для обнаружения метилирования островков CpG в геномной ДНК. ДНК сначала обрабатывается бисульфитом натрия, который преобразует неметилированные основания цитозина в урацил, распознающийся ПЦР-праймерами как тимин. Затем проводятся две ПЦР на модифицированной ДНК с использованием наборов идентичных праймеров, за исключением в любом островке CpG в пределах последовательности праймеров. В этих точках, один набор праймеров распознает ДНК с цитозинами для увеличения числа копий метилированной ДНК, и один набор распознает ДНК с урацилом или тимином для амплификации неметилированной ДНК. MSP с использованием qPCR также может выполняться с целью получения количественной, нежели качественной информации о метилировании.
  • Минипраймер - ПЦР: используются термостабильные полимеразы (S-Tbr), которые могут расширять от коротких праймеров («smalligos»), с числом от 9 или 10 нуклеотидов. Этот метод позволяет ПЦР нацеливаться на регионы, связанные с меньшими праймерами, и используется для амплификации консервативных последовательностей ДНК, таких как ген рРНК 16S (или эукариотическая 18S).
  • Амплификация зонда, зависящего от мультиплексного лигирования (MLPA ): позволяет амплифицировать множество мишеней только с одной парой праймеров, таким образом, избегая ограничений разрешения мультиплексной ПЦР.
  • Мультиплексная ПЦР состоит из нескольких наборов праймеров в одной смеси ПЦР с целью получения ампликонов разных размеров, которые специфичны к различным последовательностям ДНК. По ориентации на несколько генов одновременно, возможно получить дополнительную информацию при проведении одного теста, что в противном случае потребовало бы больше в несколько раз реагентов и больше времени для выполнения. Температуры отжига для каждого набора праймеров должны быть оптимизированы, чтобы работать правильно в пределах одной реакции, и с размерами ампликона. То есть, длина их пары оснований должна быть достаточно разной с целью образования отдельных полос при визуализации путем электрофореза в геле.
  • Вложенная ПЦР : увеличивает специфичность амплификации ДНК, за счет уменьшения фона в связи с неспецифической амплификацией ДНК. Используются два набора праймеров в двух последовательных ПЦР. В первой реакции одна пара праймеров используется для синтеза ДНК-продуктов, которые помимо намеченной цели, могут по-прежнему состоять из неспецифически амплифицированных фрагментов ДНК. Продукты используются затем во второй ПЦР с набором праймеров, чьи сайты связывания полностью или частично отличаются от 3"-концов каждого из праймеров, использованных в первой реакции. Вложенная ПЦР часто наиболее успешна в специфической амплификации длинных фрагментов ДНК, чем традиционная ПЦР, но она требует более подробных знаний о последовательностях-мишенях.
  • ПЦР с перекрывающимися расширениями или сращивание перекрывающимися расширениями (SOE): методика генной инженерии, которая применяется для соединения двух или более фрагментов ДНК, которые содержат комплементарные последовательности. Используется для соединения частей ДНК, содержащие гены, регулирующие последовательности, или мутации; техника позволяет создавать специфические и длинные конструкции ДНК.
  • Количественная ПЦР (КПЦР): используется для измерения количества продукта ПЦР (обычно в режиме реального времени). Количественно измеряет начальные количества ДНК, кДНК или РНК. КПЦР широко применяется для определения наличия последовательности ДНК в образце, и числа ее копий в пробе. Количественная ПЦР в реальном времени имеет очень высокую степень точности. Методы QRT-PCR (или QF-PCR) используют флуоресцентные красители, такие как «Sybr Green», «EvaGreen» или флюорофор-содержащие ДНК-зонды, такие как «TaqMan», чтобы измерить количество амплифицированного продукта в реальном времени. Иногда упоминается под сокращением RT-PCR (ПЦР в реальном времени) или RQ-PCR. QRT-PCR или RTQ-PCR являются более подходящими сокращениями, так как RT-PCR обычно относится к ПЦР с обратной транскрипцией, часто используемой в сочетании с КПЦР.
  • ПЦР с обратной транскрипцией (RT-PCR): для увеличения числа копий ДНК из РНК. Обратная транскриптаза транскрибирует РНК в кДНК, которая затем амплифицируется с помощью ПЦР. RT-PCR широко используется в профилировании экспрессии для выявления экспрессии гена или для определения последовательности РНК-транскрипта, включая сайты старта транскрипции и прекращения. Если известна геномная последовательность ДНК гена, RT-PCR может использоваться для отображения расположения экзонов и интронов в гене. 5"-конец гена (соответствующий сайту старта транскрипции), как правило, определяется RACE-PCR (быстрой амплификацией концов кДНК).
  • ПЦР твердой фазы : охватывает несколько значений, в том числе «Амплификация Полонии» (где ПЦР колонии производятся на матрице геля, например), «Bridge ПЦР» (праймеры ковалентно связаны с твердой опорной поверхностью), традиционная ПЦР твердой фазы (где применяется «асимметричная ПЦР» в присутствии праймеров, несущих твердую опору с последовательностью, соответствующей одному из водных праймеров), и ПЦР усиленной твердой фазы (где традиционная ПЦР твердой фазы может быть улучшена за счет применения высоких Tm и вложенных праймеров с твердой опорой с вариантом приложения термического «этапа», чтобы способствовать образованию праймеров с твердой опорой).
  • Термическая асимметричная чередующаяся ПЦР (TAIL-PCR): применяется с целью выделения неизвестной последовательности, следующей за известной последовательностью. В известной последовательности, TAIL-PCR использует вложенную пару праймеров с различными температурами отжига; дегенерат праймера используется для амплификации в другом направлении от неизвестной последовательности.
  • Touchdown PCR (ступенчатая ПЦР): вариант ПЦР, направленный на уменьшение неспецифического фона путем постепенного снижения температуры отжига по мере прогрессирования циклов ПЦР. Температура отжига на начальных циклах, как правило, на несколько градусов (3-5 ° C) выше Tm используемых праймеров, в то время как на более поздних циклах, температура на несколько градусов (3-5 ° C) ниже Tm праймеров. Более высокие температуры дают большую специфичность для связывания праймера, и более низкие температуры способствуют более эффективной амплификации из специфических продуктов, образующихся во время начальных циклов.
  • PAN-AC : использует изотермические условия для амплификации и может применяться на живых клетках.
  • Универсальная быстрая прогулка по геному : для прогулки по геному и генетической дактилоскопии с использованием более специфических «двусторонних» ПЦР, чем традиционные "односторонние" подходы (с использованием только один ген-специфического праймера и одного общего праймера - что может привести к артефактному «шуму») в силу механизма, включающего образование структуры лассо. Упрощенными производными UFW являются «Lane RAGE» (лассо-зависимая вложенная ПЦР для быстрой амплификации концов геномной ДНК), «5"RACE Lane» и «3"RACE Lane».
  • In silico PCR (цифровая ПЦР, виртуальная ПЦР, электронная ПЦР, е-ПЦР) относится к вычислительным средствам, применяющимся для вычисления результатов теоретической полимеразной цепной реакции с помощью данного набора праймеров (зондов) для амплификации последовательностей ДНК из секвенированного генома или транскриптома.

История ПЦР

В статье в «Journal of Molecular Biology» в 1971 г. Клеппе и его соавторов впервые описан метод с использованием ферментативного анализа с целью репликации короткой матрицы ДНК с праймерами в условиях пробирки. Тем не менее, это раннее проявление основного принципа ПЦР не получило много внимания, и изобретение полимеразной цепной реакции в 1983 году, как правило, приписывается Кэри Муллису.

Когда Муллис разработал ПЦР в 1983 году, он работал в Эмеривилле, Калифорнии на «Cetus Corporation», одной из первых компаний биотехнологии. Там он отвечал за синтез коротких цепочек ДНК. Муллис писал, что он задумал ПЦР во время езды вдоль шоссе Пасифик Кост однажды ночью в своем автомобиле. Он проигрывал в своем сознании новый способ анализа изменений (мутаций) в ДНК, когда он осознал, что он вместо этого изобрел метод увеличения числа копий любого участка ДНК посредством повторяющихся циклов дупликации, обусловленной ДНК-полимеразой. В «Scientific American», Муллис резюмировал процедуру: «Начиная с одной молекулы генетического материала ДНК, ПЦР может генерировать 100 млрд. подобных молекул за один день. Эту реакцию легко выполнить. Она требует не больше, чем пробирку, несколько простых реагентов и источник тепла». Он был награжден Нобелевской премией по химии в 1993 году за свое изобретение, семь лет спустя как он и его коллеги в «Cetus» впервые осуществили его предложение на практике. Тем не менее, остались некоторые противоречия об интеллектуальном и практическом вкладе других ученых в работе Муллиса, и был ли он единственным изобретателем принципа ПЦР.

В основе метода ПЦР лежит использование подходящей ДНК-полимеразы, способной выдерживать высокие температуры> 90°C (194°F), необходимых для расщепления двух цепей ДНК в двойной спирали ДНК после каждого цикла репликации. ДНК-полимеразы, первоначально использовавшиеся для экспериментов в пробирке, предвещая ПЦР, были не в состоянии выдержать такие высокие температуры. Поэтому, ранние процедуры репликации ДНК были очень неэффективны и занимали много времени, а также требовали большого количества ДНК-полимеразы и непрерывной обработки в течение всего процесса.

Открытие в 1976 г. Taq-полимеразы - полимеразы ДНК, выделенной из термофильной бактерии, Thermus aquaticus , которая, естественно, живет в горячих (от 50 до 80°C (122 до 176°F)) средах, таких как горячие источники - проложило путь к кардинальному улучшению метода ПЦР. ДНК-полимераза, выделенная из Т. Aquaticus , стабильна при высоких температурах и остается активной даже после денатурации ДНК, тем самым устраняя необходимость добавления новых ДНК-полимераз после каждого цикла. Это позволило автоматизировать процесс амплификации ДНК на основе амплификатора-термоциклера.

Патентные войны

Предложенный метод ПЦР был запатентован Кэри Муллисом и приписан «Cetus Corporation», где работал Муллис, когда он изобрел методику в 1983 году. Фермент Taq-полимераза был также защищен патентами. Было подано несколько громких исков, связанных с методикой, в том числе безуспешный иск, поданный «DuPont». Фармацевтическая компания «Hoffmann-La Roche» приобрела права на патенты в 1992 году и в настоящее время держит те, которые по-прежнему защищены.

Подобное патентное сражение за фермент Taq-полимеразу все еще продолжается в некоторых юрисдикциях по всему миру между «Roche» и «Promega». Правовые аргументы вышли за рамки сроков действия исходных патентов на ПЦР и Taq-полимеразу, срок действия которых истек 28 марта 2005 года.