Плотная волокнистая неоформленная соединительная ткань. Волокнистая соединительная ткань: что это такое, функции, строение, виды. Классификация соединительных тканей

Материал взят с сайта www.hystology.ru

Этот вид соединительных тканей характеризуется количественным преобладанием волокон над основным веществом и клетками. В зависимости от взаимного расположения волокон и образованных из них пучков и сетей различают две основные разновидности плотной соединительной ткани: неоформленную и оформленную.

В плотной неоформленной соединительной ткани волокна образуют сложную систему перекрещивающихся пучков и сетей. Такое расположение их отражает разносторонность механических воздействий на данный участок ткани, соответственно которым и располагаются эти волокна, обеспечивая прочность всей тканевой системы. Плотная неоформленная ткань находится в большом количестве в составе кожного покрова животных, где она осуществляет опорную функцию. Наряду с взаимопереплетающимися коллагеновыми волокнами в ней имеется сеть эластических волокон, обусловливающая способность тканевой системы к растяжению и возвращению в исходное состояние после прекращения действия внешнего механического фактора. Разновидности плотной неоформленной ткани входят в состав надхрящницы и надкостницы, оболочек и капсул многих органов.

Рис. 112. Плотная оформленная соединительная ткань сухожилия в продольном разрезе:

1 - коллагеновые волокна - пучки I порядка; 2 - сухожильный пучок II порядка; 3 - ядра фиброцитов; 4 - прослойки рыхлой соединительной ткани.

Плотная оформленная соединительная ткань характеризуется упорядоченно расположенными волокнами, что соответствует действию механического натяжения ткани в одном направлении. В соответствии с типом преобладающих волокон различают коллагеновую и эластическую плотные оформленные ткани. Плотная оформленная коллагеновая ткань в наиболее типичном виде представлена в сухожилиях. Она состоит из плотно лежащих, параллельно ориентированных вдоль сухожилия коллагеновых волокон и сформированных из них пучков (рис. 112). Каждое коллагеновое волокно, состоящее из многочисленных фибрилл, обозначают как пучок I порядка. Между волокнами (пучками I порядка), зажатые ими, расположены также продольно ориентированные фиброциты. Совокупность пучков I порядка образуют пучки II порядка, окруженные тонкой прослойкой рыхлой соединительной ткани - эндотенонием. Несколько пучков II порядка формируют пучок III порядка, окруженный более толстым слоем рыхлой соединительной ткани - перитенонием. В крупных сухожилиях могут быть и пучки IV порядка. Перитеноний и эндотеноний содержат кровеносные сосуды, питающие сухожилие, нервные окончания и волокна, посылающие в центральную нервную систему сигналы о состоянии натяжения ткани.

Плотная оформленная эластическая ткань у животных встречается в связках (например, в выйной). Она образована сетью толстых продольно вытянутых эластических волокон. В узких щелевидных пространствах между эластическими волокнами расположены фиброциты и тонкие, переплетающиеся между собой коллагеновые фибриллы. В некоторых местах имеются более широкие прослойки рыхлой соединительной ткани, по которым проходят кровеносные сосуды. Данная ткань, представленная системой циркулярно расположенных мембран и эластических сетей, имеется в крупных артериальных сосудах.


Плотная соединительная ткань характеризуется относительно большим количеством плотно расположенных волокон, незначительным количеством клеточных элементов и основного вещества между ними. Плотная соединительная ткань образует связки для соединения костей скелета, сухожилия мышц, передающих на кость силу тяжести, возникающую при сокращении мускулатуры. Следовательно, плотная соединительная ткань играет главным образом механическую роль. Она образует основу кожи, плотные фасции, оболочки некоторых органов, сухожилия.

Характерными признаками, отличающими плотную соединительную от других видов соединительной ткани являются:

1.Преобладающее развитие межклеточного вещества (особенно волокон) и относительно небольшого количества клеток.

2.Упорядоченное расположение гистологических элементов.

3.Наличие прослоек рыхлой соединительной ткани. Различают фиброзную и эластическую плотную соединительную ткань. Плотная волокнистая соединительная ткань в зависимости от расположения в ней волокнистых структур подразделяется на плотную неоформленную и плотную оформленную соединительную ткань.

Плотная неоформленная волокнистая соединительная ткань. Примером такой ткани может служить соединительная ткань кожи, где она образует сетчатый слой. Ткань состоит из пучков коллагеновых волокон различной толщины и сети эластических волокон плотно прилегающих друг к другу и переплетающихся между собой в виде войлока. Вокруг пучков коллагеновых волокон встречаются ретикулиновые волокна.

Плотная оформленная соединительная ткань. Этот вид тканей характеризуется многочисленными, закономерно расположенными волокнами и относительно небольшим количеством основного вещества и клеток. Там, где сила натяжения действует постоянно в одном направлении (сухожилия, связки простых суставов), все волокна располагаются в этом же направлении, т.е. идут параллельно друг другу. Если ткань испытывает разносторонние воздействие механических факторов (кожный покров, фасции, связочный аппарат сложных суставов), волокна образуют сложную систему перекрещивающихся пучков и эластических сетей. В зависимости от преобладания коллагеновых или эластических волокон различают коллагеновую и эластическую плотную оформленную соединительную ткань.

Плотная оформленная коллагеновая ткань в наиболее типичном виде представлена сухожилиями; она состоит в основном из коллагеновых пучков. На поперечном разрезе видно, что сухожилие построено из плотно прилегающих друг к другу коллагеновых волокон - пучков перврго порядка. Между ними находятся фиброциты, сдавленные коллагеновыми пучками и поэтому принимающие своеобразную форму: эндоплазма, окружающая их ядро, продолжается в тонкие пластинки эктоплазмы, одевающие с поверхности пучки первого порядка. На продольном разрезе сухожилия фиброциты, или сухожильные клетки, располагаются цепочкой. Несколько пучков первого порядка объединяются в пучки второго порядка, окруженные тонкой прослойкой рыхлой соединительной ткани (эндотенонием). Несколько пучков второго порядка формируют пучок третьего порядка, окруженный более толстым слоем рыхлой соединительной ткани (перитенонием). В крупных сухожилиях могут быть и пучки четвертого порядка. Перитеноний и эндотеноний содержат кровеносные сосуды, питающие ткань сухожилия, и нервы, посылающие в центральную нервную систему сигналы о состоянии натяжения ткани.



Плотная оформленная эластическая ткань встречается в так называемых желтых связках, например, выйной. Для нее характерно сильное развитие сети эластических волокон, вытянутой в одном направлении. Эластические волокна достигают значительной толщины. Коллагеновые волокна имеют обычное строение. Из клеточных элементов преобладают фибробласты. Обилие эластических волокон придает ткани желтый оттенок. В отличие от коллагеновой ткани желтые связки не содержат пучков различных порядков, т. к. элементы рыхлой соединительной ткани распределены в ней по всей эластической сети. Строение эластических связок напоминает резиновую тесьму, в которой растяжимые резиновые нити соответствуют эластическим волокнам, а оплетающие их бумажные или шелковые нити - нерастяжимому остову, состоящему из коллагеновых волокон.


ТКАНИ ВНУТРЕННЕЙ СРЕДЫ.

Кровь и лимфа являются основными разновидностями тканей мезенхемального происхождения образующими вместе с рыхлой волокнистой соединительной тканью внутреннюю среды организма.

У позвоночных животных количество крови варьирует от 5 до 10 % массы тела. Исключение составляют костные рыбы – у них количество крови составляет 2-3 % веса тела. Общее количество крови у человека 6,0-7,5 % массы тела, т.е. ≈ 5 литров, а объем циркулирующей крови – 3,5 – 4,0 литра.

Функции крови:

1. Транспортная – перенос различных веществ.

2. Защитная функция крови заключается в обеспечении гуморального и клеточного иммунитета.

3. Дыхательная – перенос кислорода и углекислого газа.

4. Трофическая – перенос питательных веществ.

5. Экскреторная функция связана с выведением из организма различных шлаков, образующихся в процессе его жизнедеятельности.

6. Гуморальная функция – транспорт гормонов и других биологически активных веществ.

Таблица 4.2.

Небелковые вещества: аминокислоты, мочевина, мочевая кислота, глюкоза, липиды (холестерин, триглицериды и т.д.).

Неорганические компоненты: ионы калия, натрия, кальция, магния, хлора и т.д.

Плазма крови имеет рН около 7,36.

Форменные элементы крови: К форменным элементам крови относятся:

Ø эритроциты (красные кровяные тельца) – 5· 10 12 1/л,

Ø лейкоциты (белые кровяные клетки) – 6· 10 9 1/л,

Ø тромбоциты (кровяные пластинки) – 2,5· 10 11 1/л.

Как видно, по сравнению с эритроцитами, лейкоцитов меньше примерно в 1000 раз, а тромбоцитов – в 20 раз.


Эритроциты

Эритроциты, или красные кровяные тельца (рис. 4.4, 4.5), человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл. Эритроциты являются высокодифференцированными постклеточными структурами, неспособными к делению. Основная функция эритроцитов - дыхательная - транспортировка кислорода и углекислоты. Эта функция обеспечивается дыхательным пигментом - гемоглобином - сложным белком, имеющим в своем составе железо. Кроме того, эритроциты участвуют в транспорте аминокислот, антител, токсинов и ряда лекарственных веществ, адсорбируя их на поверхности плазмолеммы. Нв является одной из основных буферных систем.

Количество эритроцитов у взрослого мужчины составляет 3,9-5,5×10 12 л, а у женщин - 3,7-4,9×10 12 /л крови. Однако число эритроцитов у здоровых людей может варьировать в зависимости от возраста, эмоциональной и мышечной нагрузки, действия экологических факторов и др.



Рис. 4.4. Эритроциты (Д) в капилляре (высокая электронная плотность цитоплазмы эритроцита (темная окраска) обусловлена присутствием железа в молекуле гемоглобина) (х6000)

P – тромбоцит.



Рис. 4.5. Эритроциты. 1 – х1200; 3 – сканирующая электронная микроскопия

На микрофотографии (4.5) 1 и 2 изображены эритроциты человека в мазке крови, окрашенном гематологическими красителями по Гимза. Клетки круглой формы, не содержащие ядра. Эритоплазма окрашена в розовый цвет (эозинофилия и ацидофилия), что связано с присутствием большого количества гемоглобина (белка с основными свойствами). В центре клетки – просветление (менее интенсивная окраска), что связано с дискообразной формой клетки.

При сканирующей электронной микроскопии 4.5. (3 ), а также 4.4. отчетливо видно, что эритроциты имеют форму диска, что значительно увеличивает площадь поверхности клетки, через которую осуществляется газообмен. Кроме того, благодаря такой форме облегчается передвижение клетки, имеющей диаметр 7,2 mm по мелким капиллярам с диаметром 3-4 мм.

Обязательной составной частью популяции эритроцитов являются их молодые формы (1-5%), называемые ретикулоцитами, или полихроматофильными эритроцитами. В них сохраняются рибосомы и эндоплазматическая сеть, формирующие зернистые и сетчатые структуры (substantia granulofilamentosa), которые выявляются при специальной суправитальной окраске (рис. 4.6).

При обычной гематологической окраске азур-эозином они в отличие от основной массы эритроцитов, окрашивающихся в оранжево-розовый цвет (оксифилия), проявляют полихроматофилию и окрашиваются в серо-голубой цвет. При заболеваниях могут появляться аномальные формы эритроцитов, что чаще всего обусловлено изменением структуры гемоглобина (Нb). Замена даже одной аминокислоты в молекуле НЬ может быть причиной изменения формы эритроцитов. В качестве примера можно привести появление эритроцитов серповидной формы при серповидно-клеточной анемии, когда у больного имеет место генетическое повреждение в бетта-цепи гемоглобина. Процесс нарушения формы эритроцитов при заболеваниях получил название пойкилоцитоз.

Размеры эритроцитовв нормальной крови также варьируют. Большинство эритроцитов (~ 75%) имеют диаметр около 7,5 мкм и называются нормоцитами. Остальная часть эритроцитов представлена микроцитами (~ 12,5 %) и макроцитами
(~ 12,5%). Микроциты имеют диаметр < 7,5 мкм, а макроциты > 7,5 мкм. Изменение размеров эритроцитов встречается при заболеваниях крови и называется анизоцитозом.

Плазмолемма эритроцита состоит из бислоя липидов и белков, представленных приблизительно в равных количествах, а также небольшого количества углеводов, формирующих гликокаликс. Большинство липидных молекул, содержащих холин (фосфатидилхолин, сфингомиелин), расположены во внешнем слое плазмолеммы, а липиды, несущие на конце аминогруппу (фосфатидилсерин, фосфатидилэтаноламин), лежат во внутреннем слое. Часть липидов (~ 5%) наружного слоя соединены с молекулами олигосахаров и называются гликолипидами. Распространены мембранные гликопротеины – гликофорины. С ними связывают антигенные различия между группами крови человека.


В плазмолемме эритроцита идентифицировано 15 главных белков с молекулярной массой 15-250 КД (рис. 4.7). Более 60% всех белков составляют примембранный белок спектрин, мембранные белки – гликофорин и полоса 3. Спектрин составляет 25% массы всех мембранных и примембранных белков эритроцита, является белком цитоскелета, связанным с цитоплазматической стороной плазмолеммы, участвует в поддержании двояковогнутой формы эритроцита.

Рис. 4.7. Строение плазмолеммы и цитоскелета эритроцита.

А – схема: 1 – плазмолемма; 2 – белок полосы 3; 3 – гликофорин; 4 – спектрин (альфа- и бетта цепи); 5 – анкирин; 6 – белок полосы 4.1; 7 – узловой комплекс; 8 – актин.

Б – плазмолемма и цитоскелет эритроцита в сканирующем электронном микроскопе. 1 – плазмолемма; 2 – сеть спектрина.

В мембране эритроцита присутствуют белки (изоантигены), обуславлевающие группы крови (АВО, Rh – фактор и т.д.).

Цитоплазма эритроцита состоит из воды (60%) и сухого остатка (40%), содержащего около 95% гемоглобина и 5% других веществ. Наличие гемоглобина обусловливает желтую окраску отдельных эритроцитов свежей крови, а совокупность эритроцитов – красный цвет крови. При окрашивании мазка крови азур II-эозином по Романовскому-Гимзе большинство эритроцитов приобретают оранжево-розовый цвет (оксифильны), что обусловлено высоким содержанием в них гемоглобина.

Гемоглобин - это сложный белок (68 КД), состоящий из 4 полипептидных цепей глобина и гема (железосодержащий порфирин), обладающий высокой способностью связывать кислород.

В норме у человека содержится два типа гемоглобина – НbА и HbF. Эти гемоглобины различаются составом аминокислот в глобиновой (белковой) части. У взрослых людей в эритроцитах преобладает НbА, (от англ. adult - взрослый), составляя 98 %. HbF или фетальный гемоглобин (от англ. foetus - плод) составляет у взрослых около 2 % и преобладает у плодов. К моменту рождения ребенка HbF составляет около 80 %, а НbА только 20 %. Эти гемоглобины отличаются составом аминокислот в глобиновой (белковой) части. Железо (Fe 2+) в теме может присоединять О 2 в легких (в таких случаях образуется оксигемоглобин - НbО 2) и отдавать его в тканях путем диссоциации НbО 2 на кислород (О 2) и Нb; валентность Fe 2+ не изменяется.

При ряде заболеваний (гемоглобинозы, гемоглобинопатии) в эритроцитах появляются другие виды гемоглобинов, которые характеризуются изменением аминокислотного состава в белковой части гемоглобина.

В настоящее время выявлено более 150 видов аномальных гемоглобинов. Например, при серповидно-клеточной анемии имеет место генетически обусловленное повреждение в бетта-цепи гемоглобина – глютаминовая кислота, занимающая 6-е положение в полипептидной цепи, заменена на аминокислоту валин. Такой гемоглобин обозначается как HbS (от англ. sickle - серп), так как в условиях понижения парциального давления О 2 он превращается в тектоидное тело, придавая эритроциту форму серпа. В ряде стран тропического пояса определенный контингент людей являются гетерозиготными для серповидных генов, а дети двух гетерозиготных родителей по законам наследственности дают либо нормальный тип (25%), либо бывают гетерозиготными носителями, и 25% страдают серповидно-клеточной анемией.

Гемоглобин способен связывать О 2 в легких, при этом образуется оксиглобин, который транспортируется ко всем органам и тканям. В тканях выделяемая СО поступает в эритроциты и соединяется с образуя карбоксигемоглобин. При разрушении эритроцитов (старых или воздействии различных факторов – токсины, радиация и др.) гемоцит выходит из клеток, и это явление называется гемолизом. Старые гемоциты разрушаются макрофагами главным образом в селезенке, а так в печени и костном мозге, при этом НЬ распадется, с высвобождением железосодержащего гемма. Железо используется для образования эритроцитов.

В макрофагах НЬ распадается на пигмент билирубин и гемосидерин - аморфные агрегаты, содержащие железо, Железо гемосидерина связывается с трансферриминовым белком плазмы, содержащим железо, и захватывается специфичными макрофагами костного мозга. В процессе образования эритроцитов эритроциты и макрофаги передают трансферрин в формирующиеся эритроциты, что является основанием назвать их клетками-кормилками.

В цитоплазме эритроцитов содержатся ферменты анаэробного гликолиза, с целью которых синтезируются АТФ и НАДН, обеспечивающие энергией главные процессы, связанные с переносом О 2 и СО 2 , а также поддержание осмотического давления и перенос ионов через плазмолемму эритроцита. Энергия гликолиза обеспечивает активный транспорт катионов через плазмолемму, поддержание оптимального соотношения концентрации К + и Na + в эритроцитах и плазме крови, обеспечении формы и целостности мембраны эритроцита. НАДН участвует в метаболизме Нb предотвращая окисление его в метгемоглобин.

Эритроциты участвуют в транспорте аминокислот и полипептидов, результате их концентрацию в плазме крови, т.е. выполняют роль буферной среды. Постоянство концентрации аминокислот и полипептидов в плазме крови поддерживается с помощью эритроцитов, которые адсорбируют избыток из плазмы, а затем отдают различным тканям и органам. Таким эритроциты являются подвижным депо аминокислот и полипептид. Сорбционная способность эритроцитов связана с состоянием газового (парциальное давление О 2 и СО 2 – Р о, Р со): в частности, при наблюдаются выход аминокислот из эритроцитов и увеличение содержания в плазме. Продолжительность жизни и старение эритроцитов. Средняя продолжительность жизни эритроцитов составляет около 120 дней. В организме ежедневно разрушается около 200 млн эритроцитов.

Лейкоциты

Лейкоциты (leucocytus), или белые кровяные клетки, в свежей крови бесцветны, что отличает их от окрашенных эритроцитов. Число их составляет в среднем 4-9×10 9 /л, т. е. в 1000 раз меньше, чем эритроцитов. Лейкоциты в кровяном русле и лимфе способны к активным движениям, могут переходить через стенку сосудов в соединительную ткань органов, где они выполняют основные защитные функции. По морфологическим признакам и биологической роли лейкоциты подразделяют на две группы (4.6.) зернистые лейкоциты, или гранулоциты (granulocytus) (рис. 4.7.), и незернистые лейкоциты, или агранулоциты (agranulocytus) (рис. 4.8.).


Рис. 4.8. Классификация лейкоцитов.

Рис. 4.9. Гранулоциты: А – нейтрофильный лейкоцит, Б – эозинофильный лейкоцит,

В – базофильный лейкоцит (х1200).

Рис. 4.10. Агранулоциты: малый (1), средний (2) лимфоциты и моноцит (3) (х1200)

У зернистых лейкоцитов при окраске крови по Романовскому-Гимзе смесью кислого (эозин) и основного (азур II) красителей в цитоплазме выявляются специфическая зернистость (эозинофильная, базофильная или нейтрофильная) и сегментированные ядра. В соответствии с окраской специфической зернистости различают нейтрофильные, эозинофияьные и базофильные гранулоциты. Группа незернистых лейкоцитов (лимфоциты и моноциты) характеризуется отсутствием специфической зернистости и несегментированными ядрами. Процентное соотношение основных видов лейкоцитов называется лейкоцитарной формулой (таб. 4.3.) . Общее число лейкоцитов и их процентное соотношение у человека могут изменяться в норме в зависимости от употребляемой пищи, физического и умственного напряжения и др. и при различных заболеваниях. Поэтому исследование показателей крови является необходимым для установления диагноза и назначения лечения.

Таблица 4.3.

Лейкоцитарная формула

Все лейкоциты способны к активному перемещению путем образования псевдоподий, при этом у них изменяются форма тела и ядра. Они способны проходить между клетками эндотелия сосудов и клетками эпителия, через базальные мембраны и перемещаться по основному веществу (матриксу) соединительной ткани. Скорость движения лейкоцитов зависит от следующих условий: температуры, химического состава, рН, консистенции среды и др. Направление движения лейкоцитов определяется хемотаксисом под влиянием химических раздражителей – продуктов распада тканей, бактерий и др. Лейкоциты выполняют защитные функции, обеспечивая фагоцитоз микробов (гранулоциты, макрофаги), инородных веществ, продуктов распада клеток (моноциты – макрофаги), участвуя в иммунных реакциях (лимфоциты, макрофаги).

Различают коллагеновую и эластическую плотные оформленные соединительные ткани. К ним относятся сухожилия, связки, фасции и др.

Сухожилия прочно связывают мышцы скелета. Они построены из разных пучков колла-геновых волокон, идущих в одном направлении, т.е.

Упорядоченно (рис. 111) в сухожилиях различают три порядка коллагеновых волокон. Пучки I порядка – это коллагеновые волокна, отделённые друг от друга сухожильными клетками. Совокупность пучков I порядка, объединённая тонкой прослойкой рыхлой соединительной ткани, составляет пучки II порядка. Совокупность пучков II порядка составляет пучки III порядка. Они окружены значительно более толстой прослойкой соединительной ткани (см. рис.111) в прослойках между пучками II и III порядков проходят кровеносные сосуды и нервные волокна, питающие и иннервирующие сухожилия.

Плотная оформленная эластическая соединительная ткань в основном состоит из эластических волокон и прослоек рыхлой соединительной ткани, содержащей коллагеновые волокна и фибробласты. Эластическая ткань расположена в основном в связках. Эластическая ткань представлена также и обширными мембранами, например, в стенках крупных артерий и других органах.

Дерма кожи является представителем плотной неоформленной соединительной ткани. Она тоже в основном состоит из плотной сети коллагеновых волокон расположенных разнонаправлено. В ячейках сети расположены мелкие островки рыхлой соединительной ткани с кровеносными сосудами, питающими кожу, и редкими жировыми клетками.

К плотным тканям относятся хрящевая и кожная ткани.

Хрящевая ткань. Хрящевая ткань характеризуется плотным основным промежуточным веществом, в котором располагаются группами и поодиночке хрящевые клетки без отростков (хондроциты). Хрящевая ткань выполняет опорную функцию и является основой для закладки скелета животного. У взрослых животных хрящ встречается на суставных поверхностях, кончиках рёбер, в стенках трахеи и бронхов, ушной раковине и других местах. Хрящи состоят из большого количества межклеточного вещества и клеточных элементов. Основное промежуточное вещество нестолько плотно, что в него не прорастают сосуды и нервы. Поэтому хрящи питаются с поверхности через их надхрящницу путём диффузии веществ. По строению промежуточного вещества различают три вида хрящей: гиалиновый, эластический и волокнистый (рис.113). клетки надхрящницы хондробласты размножаются путём митоза и, обводняясь, превращаются в хондроциты, увеличивая общую массу развивающегося хряща или заполняя места после его повреждения.

Гиалиновый (или стекловидный) хрящ характеризуется своей прозрачностью, имеет голубоватый оттенок. Он встречается на суставных поверхностях, кончиках рёбер, в носовой перегородке, трахее и бронхах. Диаметр хондроцитов 3-30мкм, форма их округлая, овальная, угловатая, дисковидная. Хондроциты часто расположены группами по две-четыре – это так называемые изогенные группы. Хрящевые клетки, лежащие ближе к надхрящнице всегда располагаются по одиночке. Основное промежуточное вещество гиалинового хряща состоит из аморфного и волокнистого (коллагенового) материалов. Чем старше животное, тем резче выражено содержание основного вещества, в результате создаются более тёмные пятна вокруг групп и отдельных клеток. В хряще с возрастом накапливаются соли извести, хрящ становится более хрупким.

Эластический хрящ в основном веществе кроме коллагеновых волокон содержит сеть эластических волокон, которые придают всему хрящу большую эластичность и гибкость, а также желтоватую окраску и меньшую прозрачность. Хондроциты и изогенные группы окружены более тёмными капсулами. Клетки и изогенные группы в эластическом хряще расположены столбиками (см.рис.113,б). эластический хрящ имеется в ушной раковине, в надгортаннике, наружном слуховом проходе, дыхательном горле северного оленя. В эластическом хряще процессы обызвествления всегда отсутствуют.

Волокнистый хрящ – это разновидность гиалинового хряща в котором содержатся упорядоченно расположенные пучки коллагеновых волокон значительного диаметра. Создаётся полосатая структура, в которой полосы гиалинового хряща чередуются с пучками коллагеновых волокон (см.рис.113,в). Волокнистый хрящ занимает промежуточное положение между гиалиновым хрящом, сухожилиями и фасциями. Он постоянно переходит от гиалинового хряща в оформленную соединительную ткань. Из волокнистого хряща состоят межпозвоночные диски (мениски), а также места переходов от сухожилий к костям. Хрящевая ткань помимо опорной функции принимает участие в обмене углеводов.

Волокнистые соединительные ткани - типичные представители группы соединительных тканей, для которых характерно высокое содержание продуцируемого клетками матрикса. В основу их классификации положено соотношение клеток и матрикса с учетом свойств и организации последнего. Выделяют две разновидности.

В плотной волокнистой соединительной ткани клеточные элементы малочисленны и однообразны: преобладает один тип клеток - фиброциты. В матриксе выявляется большое число волокон.

В рыхлой волокнистой соединительной ткани клеточные элементы многочисленны и разнообразны. Для нее характерно сравнительно небольшое содержание в матриксе волокон при относительно большом объеме основного межфибриллярного вещества.

Плотная волокнистая соединительная ткань

Суставная капсула - это специфически дифференцированное соединительнотканное образование. В ней принято различать наружную фиброзную оболочку (membrana fibrosa) и внутреннюю - синовиальную оболочку (membrana synovialis).

Для плотной волокнистой ткани в составе фиброзной оболочки капсулы характерны типичные для этого вида соединительной ткани клетки - фиброциты - дефинитивные формы среди клеток фибробластического ряда. Они локализуются в слабо развитом интерстициальном пространстве, имеют веретенообразную форму и небольшие крыловидные отростки. Слабое развитие органелл соответствует низкому уровню биосинтетической функции этих клеток. Другие клетки соединительной ткани в норме единичны.

Плотная волокнистая соединительная ткань обладает четко выраженной преимущественной ориентацией коллагеновых волокон, эластических сетей и клеток. Такая ткань обладает значительной растяжимостью соответственно вектору смещения структур органа и значительной прочностью на разрыв.

Суставная капсула формирует замкнутую суставную сумку вокруг сочленяющихся в суставе костей, обеспечивая последним благоприятную среду для перемещения относительно друг друга. Капсула обеспечивает герметичность заполненного синовией (СЖ) щелевидного пространства, именуемого суставной полостью. Фиброзная оболочка капсулы имеет непосредственную связь (анатомическую и функциональную) с суставными связками, что позволяет говорить о наличии единой сумочно-связочной системы у каждого синовиального сустава.

Согласно С.А. Ахмалетдинову, в отделах фиброзной оболочки капсулы коленного сустава по упруго-прочностным свойствам, способности к деформации, фиброархитектонике, составу основного вещества можно выделить три группы структур:

  • структуры, сочетающие большую прочность и упругость с относительно малой способностью к деформации (заднемедиальный отдел капсулы);
  • структуры с большими прочностными и упругими свойствами, а также способностью к значительной деформации - удлинению (капсула сустава ниже менисков);
  • структуры с относительно небольшими прочностными и упругими свойствами, но большими возможностями для деформации (передние и заднелатеральные отделы капсулы).

Биохимическая и биомеханическая характеристики фиброзных структур сустава

Фиброзная капсула сустава, подобно другим разновидностям плотной соединительной ткани, весьма богата коллагенами. Так, если пересчитать на коллаген концентрацию специфического показателя коллагеновых белков - гидроксипролина - в капсуле плечевого сустава человека, станет ясно, что коллагены составляют около 80 г/100 г сухой обезжиренной ткани. Близкие цифры содержания коллагена были получены ранее при исследовании капсулы нормального тазобедренного сустава человека.

Главный коллаген фиброзных разновидностей соединительной ткани в зрелом ее состоянии - коллаген I типа. Другой большой интерстициальный коллаген - коллаген III типа, свойственный главным образом соединительной ткани эмбрионов и растущих организмов, составляет в капсуле суставов взрослого человека лишь небольшую часть общего количества коллагенов.

Как правило, массивные коллагеновые волокна суставной капсулы, основу которых составляет коллаген I типа, являются гетеротипическими. В большинстве случаев они содержат также небольшое количество ковалентно связанных с макромолекулами коллагена I типа макромолекул «малого» фибриллярного коллагена Утипа. Коллаген V типа, кроме того, присутствует в стенках кровеносных сосудов капсулы, где он продуцируется гладкомышечными и эндотелиальными клетками.

Кроме того, коллаген I типа в этих волокнах сопровождается макромолекулами ассоциированных нефибриллярных коллагенов XII, XIV, XX типов, входящих в подсемейство так называемых FACIT-коллагенов. В отличие от коллагена IX типа, который ковалентно связан с фибриллами коллагена II типа, FACIT-коллагены фиброзных тканей присоединены к коллагену I типа нековалентными связями. Предполагают, что все FACIT-коллагены выполняют общие по отношению к разным «большим» коллагеновым волокнам функции, а именно функции связывающих «мостиков» между волокнами.

На основании исследований in vitro у коллагенов XII и XIV типов предполагается еще одна функция - повышение деформативности трехмерной сети больших коллагеновых волокон в экстрацеллюлярном матриксе. Повышенная деформативность волокон создает благоприятные условия для миграции фибробластов. С этим предположением согласуется факт усиления экспрессии клетками коллагена XII типа при приложении к сухожилию растягивающих усилий.

Коллагены играют центральную роль в формировании биомеханических свойств суставной капсулы, в частности прочности на разрыв. Особенно важен в этом отношении, как и во всех других разновидностях соединительной ткани, коллаген I типа. Прочность на разрыв неодинакова у капсул различных суставов. Например, капсула плечевого сустава человека значительно прочнее капсулы локтевого сустава, несмотря на примерно одинаковую концентрацию коллагенов в ткани и примерно одинаковую толщину коллагеновых волокон (по данным ТЭМ). Различия в прочности капсул более выражены в молодом возрасте, а по мере старения прочность на разрыв обеих капсул снижается, и различия уменьшаются. Считают, что одним из факторов, способствующих снижению прочности суставных капсул с возрастом, является их кальцификация.

В суставной капсуле присутствует эластин. В концентрации этого фибриллярного белка имеются половые различия: в капсуле тазобедренного сустава у молодых самок крыс концентрация эластина составляет в среднем 3,3 г/100 г, а у самцов того же возраста - 1,1 г/100 г высушенной обезжиренной ткани. Она повышалась при введении животным эстрогенов и понижалась при введении тестостерона.

То обстоятельство, что при одинаковом количественном содержании коллагена отмечаются различия в биомеханических свойствах суставных капсул, может рассматриваться как указание на возможное участие неколлагеновых компонентов ткани в формировании этих свойств - участие, хорошо известное в общей биомеханике соединительной ткани. Авторы не проводили количественный биомеханический анализ разных капсул. Можно также упомянуть, что капсула тазобедренного сустава человека содержит больше гексозаминсодержащих гликоконъюгатов и сравнительно много ДНК (1,5-2,2 г/100 г высушенной обезжиренной ткани), другими словами - относительно богата клетками. Нарушение биомеханических свойств капсулы, наблюдаемое при OA тазобедренного сустава, развивается на фоне снижения концентрации ДНК, что указывает на уменьшение клеточной популяции.

Все эти факты, а также найденное L. Videman увеличение содержания гликозаминогликанов в ткани капсулы при иммобилизации (в экспериментах на кроликах с иммобилизацией в состоянии разгибания коленного сустава) говорят о том, что оптимизация биомеханических свойств суставных капсул обусловлена взаимодействием коллагеновых структур ткани с другими ее компонентами.

Морфофункциональная специфика суставных связок

Связки - это соединительнотканные образования в виде тяжей или пластин, входящие в состав аппарата, укрепляющего сустав. По отношению к суставной капсуле различают три разновидности связок. Первая разновидность - это внекапсульные связки, которые расположены вне капсулы сустава, но очень часто вплетающиеся в нее. Вторая разновидность - это капсулъные связки, которые являются уплощениями суставной капсулы. И наконец, третьей разновидностью являются внутрикапсульные (внутрисуставные) связки, находящиеся в суставной полости и покрытые СО. Так, в коленном суставе анатомически различают 9 связок, среди которых - две внутрисуставные крестообразные связки, две коллатеральные (малоберцовая и большеберцовая) и др.

Вместе с тем для соединительной ткани связок характерны свои особенности.

Коллатеральная большеберцовая связка представляет плоский соединительнотканный тяж, в котором выявляются поверхностные и глубокие пучки коллагеновых волокон. Коллатеральная малоберцовая связка представляет собой соединительнотканный тяж овальной формы, в котором так же, как и в крестообразных связках, различают пучки коллагеновых волокон трех порядков. Обе коллатеральные связки в целом отличаются от крестообразных большим содержанием эластических волокон.

М.М. Галлямовым также показано, что СО, покрывающая крестообразные связки, имеет ряд особенностей, не присущих СО других зон суставной полости. Это прежде всего синовиальные карманы - обширные углубления, которые являются резервуарами СЖ и увеличивают общую поверхность СО в суставе. Внутрисвязочные кровеносные сосуды непосредственно сообщаются с кровеносным руслом покрывающей связки СО, которое представлено однослойной и двухслойной сетями капилляров. По данным М.М. Галлямова, на 1 мм 2 поверхности среза крестообразных связок коленного сустава человека приходится 9,9 ± 1, 1звеньев микроциркуляторного русла с суммарной площадью стенок 0,14 ±0,01 мм 2 , в то время как на ту же площадь в СО приходится 66,0 ±6,7 сосудов с суммарной площадью стенок 0,97 ±0,1 мм 2 .

Некоторые биохимические характеристики суставных связок

В связках наряду с характерным для них и сухожилий коллагеном I типа отмечается представительство второго из «больших» интерстициальных коллагенов - коллагена III типа (до 12% общего количества), а также минорных FACIT-коллагенов.

Центральным формообразующим фактором, определяющим количественное накопление и структурную организацию коллагенов в связках и сухожилиях, являются механические нагрузки. Действие этого фактора начинается сразу же после рождения, одновременно с началом движений. В экспериментах на крысах установлено, что абсолютное содержание коллагена, определяемое по гидроксипролину, в медиальной коллатеральной связке коленного сустава увеличивается вследствие тренировки на тредбане; это абсолютное увеличение (концентрация гидроксипролина остается неизмененной) отражает утолщение связки. При снятии естественных механических нагрузок, которое достигалось в опытах на кроликах иммобилизацией коленного сустава, в этой же медиальной коллатеральной связке масса коллагенов уменьшалась, что было обусловлено ускоренным распадом коллагенов, которое лишь частично компенсировалось усиленным в восстановительном периоде биосинтезом.

Количественное содержание коллагенов в сухожилиях и связках увеличивается с возрастом. Общая концентрация коллагенов в пяточном (ахилловом) сухожилии кролика составляет при рождении 37 г/100 г, а у старых животных (в возрасте 4 лет) - 85 г/100 г высушенной обезжиренной ткани. Эта динамика согласуется с тем фактом, что фиброциты фиброзного аппарата сустава сохраняют способность экспрессировать макромолекулы матрикса. Эта способность в большей степени выражена у клеток тех отделов сухожилий и связок, которые подвержены большей механической нагрузке. Механическая нагрузка способствует совершенствованию структурной организации коллагеновых фибрилл.

Коллаген I типа является главным фактором, обеспечивающим прочность сухожилий и связок на разрыв. При этом большое значение имеет степень развития межмолекулярных поперечных связей в коллагеновых волокнах.

При общем большом сходстве морфологических и биохимических параметров связок и сухожилий нельзя не отметить, что содержание клеток и основного (межфибриллярного) вещества в связках, особенно внутрисуставных, выше, чем в сухожилиях. Одним из показателей этого является более высокое содержание в связках ДНК. Эти данные соответствует морфологической картине связок, в которой обращает на себя внимание сравнительно высокая насыщенность клетками.

Большое значение в супрамолекулярной организации сухожилий и связок имеют «малые» (богатые лейцином) протеогликаны декорин и фибромодулин. Они взаимодействуют с FACIT-коллагенами, включаясь, таким образом, в регулирование фибриллогенеза больших коллагенов. У животных с выключенными генами малых протеогликанов развивается серьезная дезорганизация структуры коллагеновых фибрилл в сухожилиях.

Сухожилия и связки неоднородны по химическому составу на своем протяжении. В подвергающихся давлению участках, в области прикрепления сухожилия кости, отмечены экспрессия агрекана, а также найдена значительно более активная экспрессия антиадгезивного гликопротеина тенасцина С, чем в подверженном растяжению центральном отделе. Предполагают, что тенасцин С в этих участках предохраняет фиброциты от компрессии, давая им возможность продуцировать компоненты, свойственные матриксу хряща. В этих же участках сухожилий, наряду с коллагеном I типа и связанными с ним FACIT-коллагенами, присутствуют коллагены, характерные для гиалинового хряща - И, IX, а также III типов.

Мениски. Диски. Суставные губы

Специфическими для ряда крупных суставов являются диски, мениски и суставные губы - структуры, состоящие из фиброзной ткани и хряща (преимущественно волокнистого).

Некоторые суставы человека (коленный, височно-челюстной, грудино-ключичный, лучезапястный) содержат особые образования, по сути близкие к внутрисуставным связкам, - мениски и диски. Мениски присутствуют в коленных суставах. Диски выявляются в остальных перечисленных выше суставах. Менискам и дискам свойственна двойственная биомеханическая функция: во-первых, они снижают компрессию, падающую на суставные хрящи; во-вторых, исполняют роль внутрисуставных связок, повышающих стабильность сустава. Этой функции менисков и дисков соответствует и материал, из которого они построены, а именно фиброзный (волокнистый) хрящ.

Суставные губы. Суставная губа имеется и в тазобедренном суставе. Функция ее аналогичная, а именно увеличивать размеры и выпуклость впадины сустава.

Немногочисленная клеточная популяция менисков и дисков состоит из фибробластов и уплощенных хондроцитов, близких по виду к хондроцитам поверхностной зоны суставных хрящей. Как и в волокнистой соединительной ткани, в менисках коленного сустава среди коллагеновых белков преобладает коллаген I типа, на который приходится не менее 90% общего количества коллагенов. Только около 10% составляют коллагены, свойственные гиалиновому хрящу, главным образом коллаген II типа. В эмбриональном периоде в ткани менисков экспрессируются лишь коллагены I, III и Vтипов, экспрессия коллагена II типа обнаруживается только после рождения, когда сустав начинает подвергаться механической нагрузке. Появляются также коллагены IX и VI.

В менисках и дисках содержатся свойственные гиалиновому хрящу агрегаты агрекана, но общее количество протеогликанов, определяемое, например, в ткани цельных менисков и дисков по концентрации гликозаминогликанов, примерно в 10 раз меньше, чем в суставном хряще. Кроме агрекана, мениски и диски содержат также небольшие количества «малых» протеогликанов - бигликана, декорина и фибромодулина. Они распределены в менисках неравномерно: их суммарная концентрация выше в тонких медиальных зонах, подвергающихся наиболее сильной компрессии.

Биосинтез протеогликанов в менисках человека увеличивается с возрастом. Между 20 и 62 годами экспрессия мРНК декорина увеличивается в 5 раз, мРНК агрекана - в 8 раз, хотя эти показатели продолжают оставаться гораздо более низкими по сравнению с суставными хрящами. Более значительное усиление экспрессии агрекана связано, вероятно, с возрастным повышением массы тела и увеличением компрессионной нагрузки на коленные суставы. Из числа гликопротеинов в менисках установлено наличие фибронектинов и тромбоспондинов.

Соединительные ткани разнообразны по своему строению, так как выполняют опорную, трофическую и защитную функции. Они состоят из клеток и межклеточного вещества, которого по количеству больше, чем клеток. Эти ткани обладают высокой регенеративной способностью, пластичностью, приспособлением к изменению условий существования.

Рост и развитие их происходит за счет размножения, трансформации малодиференцирванных молодых клеток.

Соединительные ткани произошли из мезенхимы, т.е. эмбриональной соединительной ткани, которая сформировалась из среднего зародышевого листка — мезодермы.

Различают несколько видов соединительной ткани:

  • Кровь и лимфа;
  • Рыхлая волокнистая неоформленная ткань;
  • Плотная волокнистая (оформленная и неоформленная) ткань;
  • Ретикулярная ткань;
  • Жировая;
  • Хрящевая;
  • Костная;

Из этих видов плотная волокнистая, хрящевая и костная выполняют опорную функцию, остальные ткани – защитную и трофическую.

Рыхлая волокнистая неоформленная соединительная ткань:

1 — коллагеновые волокна, 2 — эластические волокна, 3 — макрофаги, 4 -фибробласты, 5 — плазматическая клетка

Рыхлая волокнистая неоформленная соединительная ткань

Эта ткань состоит из различных клеточных элементов и межклеточного вещества.

Она входит в состав всех органов, во многих из них образует строму органа. Она сопровождает кровеносные сосуды, через нее происходит обмен веществ между кровью и клетками органов и, в частности, переход питательных веществ из крови в ткани.

В межклеточное вещество входят три рода волокон: коллагеновые, эластические и ретикулярные.

Коллагеновые волокна располагаются в различных направлениях в виде прямых или волнообразно изогнутых тяжей толщиной 1-3 мк и более. Эластические волокна тоньше коллагновых, анастомозируют друг с другом и образуют более или менее широкоплетистую сеть.

Ретикулярные волокна тонкие, образуют нежную сетку.

Основное вещество — это студнеобразная, бесструктурная масса, заполняющая пространство между клетками и волокнами соединительной ткани.

К клеточным элементам рыхлой волокнистой ткани относят следующие клетки: фибробласты, макрофаги, плазматические, тучные, жировые, пигментные и адвентициальные.

Фибробласты — это наиболее многочисленные плоские клетки, имеющие на срезе веретенообразную форму, часто с отростками.

Они способны к размножению. Принимают участие в образовании основного вещества, в частности образуют волокна соединительной ткани.

Макрофаги — клетки способные поглощать и переваривать микробные тела. Различают макрофаги, находящиеся в спокойном состоянии — гистоциты и блуждающие – свободные макрофаги. Они могут быть круглые, вытянутые и неправильной формы.

Способны к амебовидным передвижениям, уничтожают микроорганизмы, нейтрализуют токсины, участвуют в формировании иммунитета.

Плазматические клетки встречаются в рыхлой соединительной ткани кишечника, лимфатических узлах, костном мозге. Они небольшие, округлой или овальной формы. Играют большую роль в защитных реакциях организма, например, принимают участие в синтезе антител.

В них вырабатываются глобулины крови.

Тучные клетки — в их цитоплазме имеется зернистость (гранулы). Они находятся во всех органах, где имеется прослойка рыхлой неоформленной соединительной ткани.

Форма разнообразна; гранулы содержат гепарин, гистамин, гиалуроновую кислоту. Значение клеток заключается в секреции этих веществ и регуляции микроциркуляции.

Жировые клетки — это клетки способные откладывать в цитоплазме резервный жир в виде капель. Они могут вытеснять другие клетки и образуют жировую ткань. Клетки имеют сферическую форму.

Адвентициальные клетки располагаются по ходу кровеносных каппиляров. Они имеют вытянутую форму с ядром в центре.

Способны к размножению и превращению в другие клеточные формы соединительной ткани. При отмирании ряда клеток соединительной ткани, их пополнение происходит за счет этих клеток.

Эта ткань делится на плотную оформленную и неоформленную.

Плотная неоформленная ткань состоит из, относительно, большого количества плотно расположенных соединительнотканных волокон и незначительного числа клеточных элементов между волокнами.

Плотная оформленная ткань характеризуется определенным расположением соединительнотканных волокон.

Из этой ткани построены сухожилия, связки и некоторые другие образования. Сухожилия состоят из плотно расположенных параллельных пучков коллагеновых волокон.

Между ними располагается тонкая эластичная сеть и небольшие пространства заполнены основным веществом. Из клеточных форм в сухожилиях имеются только фиброциты.

Разновидность плотной соединительной ткани является эластическая волокнистая соединительная ткань. Из нее построены некоторые связки, например, голосовые.

В этих связках толстые округлые или уплощенные эластические волокна располагаются параллельно рядом, но часто ветвятся.

Пространство между ними заполнено рыхлой неоформленной соединительной тканью. Эластическая ткань образует оболочку круглых сосудов, входит в состав стенок трахеи и бронхов.

Хрящевая ткань

Эта ткань состоит из клеток, большого количества межклеточного вещества и выполняет механическую функцию.

Различают два вида хрящевых клеток:

  • Хондроциты — это овальные клетки имеющие ядро.

Они расположены в особых капсулах, окруженных межклеточным веществом. Клетки располагаются в одиночку или по 2-4 клетки и более, их называют изогенными группами.

  • Хондробласты — это молодые, уплощенные клетки, расположенные по периферии хряща.

Различают три вида хряща: глиановый, эластический и коллагеновый.

Глиановый хрящ. Встречается во многих органах: в ребрах, на суставных поверхностях костей, на протяжении воздухоносных путей.

Его межклеточное вещество однородно и полупрозрачно.

Эластический хрящ . В его межклеточном веществе имеются хорошо развитые эластические волокна. Из этой ткани построены надгортанник, хрящи гортани и она входит в состав стенки наружных слуховых проходов.

Коллагеновый хрящ. Его промежуточное вещество состоит из плотной волокнистой соединительной ткани, т.е. включает параллельные пучки коллагеновых волокон. Из этой ткани построены межпозвоночные диски, она встречается в грудино-ключичном и нижнечелюстном суставах.

Все виды хряща покрыты плотной волокнистой тканью, в которой обнаружены коллагеновые и эластические волокна, а так же клетки сходные с фибробластами.

Эта ткань называется надхрящницей; богато снабжена сосудами и нервами. Рост хряща происходит за счет надхрящницы путем трансформации ее клеточных элементов в хрящевые клетки.

В межклеточном веществе зрелого хряща нет сосудов и его питание происходит путем диффузии веществ из сосудов надхрящницы.

Костная ткань

Эта ткань состоит из клеток и плотного межклеточного вещества. Она отличается тем, что ее межклеточное вещество обызвествлено. Это придает кости твердость, необходимую для выполнения опорной функции. Из данной ткани построены кости скелета.

К клеточным элементам костной ткани принадлежат костные клетки, или остеоциты, остеобласты и остеокласты.

Остеоциты — имеют отростчатую форму и компактное, темноокрашивающееся ядро.

Клетки лежат в костных полостях, которые повторяют контуры остеоцитов. Остеоциты не способны к размножению.

Костные клетки:

1 — отросчатые; 2 — межклеточное вещество

Остеобласты – клетки, создающие костную ткань.

Они округлой формы, иногда содержат несколько ядер, располагаются в надкостнице.

Остеокласты – клетки, принимающие активное участие в разрушении обызвествленного хряща и кости. Это многоядерные, довольно большие клетки. В течение всей жизни происходит разрушение структурных частей костной ткани и одновременно образование новых, как на месте разрушения, так и со стороны надкостницы.

В этом процессе и принимают участие остеокласты и остеобласты.

Межклеточное вещество костной ткани состоит из аморфного основного вещества, в котором расположены оссеиновые волокна. Различают грубоволокнистую ткань, которая представлена у эмбрионов, и пластинчатую костную ткань, имеющуюся у взрослых и детей.

Структурной единицей костной ткани является костная пластинка. Она образована костными клетками, лежащими в капсулах, и тонковолокнистым межклеточным веществом, пропитанным солями кальция.

Оссеиновые волокна этих пластинок лежат параллельно друг другу в определенном направлении. В соседних пластинках волокна обычно имеют перпендикулярное к ним направление, что обеспечивает большую прочность костной ткани. Костные пластинки в разных костях располагаются в определенном порядке. Из них построены почти все плоские, трубчатые и смешанные кости скелета.

В диафизе трубчатой кости пластинки образуют сложные системы, в которых различают три слоя:

1) наружный, в котором пластинки не образуют полных колец и перекрываются на поверхности следующим слоем пластинок; 2) средний слой образован остеонами.

В остеоне костные пластинки расположены концентрически вокруг кровеносных сосудов; 3) внутренний слой пластинок отграничивает костномозговое пространство, где располагается костный мозг.

Схема строения остеона: в левой половине показаны костные полости и канальцы, в правой — направление волокон в отдельных пластинках

Кость растет и восстанавливается за счет надкостницы, которая покрывает наружную поверхность кости и состоит из тонковолокнистой соединительной ткани и остеобластов.

Плотная волокнистая соединительная ткань человека

В организме человека есть несколько типов тканей, предназначенных для выполнения своих конкретных функций.

Плотная волокнистая соединительная ткань человека входит в категорию тканей внутренней среды и считается одной из самых важных видов – об этом свидетельствует даже тот факт, что ее удельная доля в общей структуре составляет более 60% от общей массы.

Строение характеризуется наличием межклеточного вещества и непосредственно самих клеток (фиброцитов).

Аморфное вещество и волокна и составляют межклеточное вещество.

Плотная волокнистая соединительная ткань может быть:

  • неоформленная , которая представлена сетчатыми слоями дермы.

    Состоит из многочисленных волокон, плотно расположенных по отношению друг к другу. В эту же категорию входят и незначительное количество расположенных между ними клеток.

  • оформленная , образующая связки, сухожилия, капсулы, мышечные структуры, фасции.

    Это один из важнейших строительных материалов в человеческом организме, состоящий из клеток-фиброцитов. Например, ткани, из которых состоят сухожилия, созданы с помощью размещенных параллельно коллагеновых пучков, между которыми промежутки находятся тонкостенные эластичные сети и клеточное вещество.

Плотная волокнистая соединительная ткань является одним из главных элементов, связывающих все остальные ткани в человеческом организме.

Именно от ее состояния во многом зависит большинство стабильная деятельность и реализация основных жизненно важных функций человеческого организма.

Особенности

Плотная волокнистая соединительная служит для образования опорного каркаса, который называется стромой, а также дермы – наружных покровы. Основными особенностями этого вида тканей является:

  • структурное и клеточное сходство;
  • выполнение поддерживающих и формирующих функций;
  • мезенхим в качестве общего происхождения.

Функции плотной волокнистой соединительной ткани

Данный тип ткани имеет один из самых обширных перечней функций, которые она выполняет для поддержания стабильного нормального состояния организма.

Это следующие виды функций:

  • гомеостатическая, подразумевающая создание условия для поддержания и сохранения постоянства внутренней среды в организме, а также регенерацию тканей
  • трофическая. Выполнение этой функции обеспечивает стабильное обеспечение органов и других тканей питательными элементами и веществами
  • дыхательная.

    Предназначена для поддержания нормального уровня газообмен

  • регулирующая. Позволяет с помощью биологически активных элементов и различных контактов регулировать деятельность других тканей
  • защитная. Обеспечение образования иммунных тел и создание достаточного уровня защиты
  • транспортная.

    Экспедирует питательные вещества, полезные микроэлементы, газы, вещества для нормальной регуляции, клетки и факторы защиты

  • механическая и опорная. Формирует поддерживающие и опорные элементы, необходимые для нормального существования и функционирования других типов тканей.

    Кроме того, участие в создании органов, которые будут выполнять поддерживающие функции в организме (мышцы, хрящи и т.д.)

Особенности плотной волокнистой соединительной ткани

Данный тип ткани в своей структуре содержит межклеточные вещества и различные виды клеток. Характеризуется высокой восстановительной и заживляющей способностью, то есть быстрой регенерацией. Кроме того, в числе характеристик отмечается отличная эластичность и возможность адаптироваться при изменения внешних и внутренних условий среды существования.

Такие ткани имеют способность расти и размножаться благодаря возможностей трансформирования и размножения малодифференцированных клеток.

В таких местах волокна тканей располагаются параллельно и при этом разветвляются в определенных участках. Имеющиеся между такими волокнами пространства наполнены неоформленной рыхлой тканью.

Соединительная ткань человека

Соединительная ткань человека состоит из неподвижных клеток (фиброцитов, фибробластов), которые и составляют основное вещество и волокнистое межклеточное вещество.

Кроме того, в соединительной (как и в других рыхлых тканях) имеются различные свободные клетки (тучные, жировые, блуждающие и др.).

К соединительной ткани относятся также костная и хрящевая ткани.

Функции

Соединительные ткани, в том числе и опорного типа (костная, хрящевая), придают телу человека форму, прочность и устойчивость, а также защищают, покрывают и соединяют органы между собой. Основная функция межклеточного вещества — опорная, а основное вещество обеспечивает обмен веществ между клетками и кровью.

Виды

  • Эмбриональная (мезенхима) — формируется в утробе матери. Из нее состоят все типы соединительной ткани, мышечные клетки, кровяные клетки и др.
  • Ретикулярная — состоит из клеток-ретикулоцитов, способных накапливать воду и действовать как фагоциты. Эта ткань принимает участие в выработке антител, так как содержится во всех органах лимфатической системы и составляет основу костного красного мозга.
  • Интерстициальная — является опорной тканью органов, неоформленной, или диффузной, рыхлой, заполняющей промежутки между внутренними органами. Помимо клеток, в интерстициальной ткани содержатся волокнистые структуры.
  • Эластичная — содержит большое количество прочных коллагеновых волокон, имеющихся в связках, сухожилиях и фасциях, покрывающих мышцы.
  • Жировая — предохраняет организм от потери тепла, у позвоночных она расположена главным образом под кожей, в сальнике и между внутренними органами, образуя мягкие, упругие прокладки. У человека она представлена белой и коричневой жировой тканью.

Хрящевая ткань

Устойчива к давлению, гибкая и достаточно мягкая. Ее составляют водянистые клетки и межклеточное вещество. По характеру межклеточного вещества хрящи делятся на гиалиновые, эластичные и волокнистые.

В хрящах почти отсутствуют кровеносные сосуды и нервы. Гиалиновый хрящ синевато-белого цвета содержит большое количество коллагеновых волокон.

Он покрыт надхрящницей, из него состоит скелет зародыша, суставные, реберные хрящи, большинство хрящей гортани, трахеи. Эластичный хрящ желтоватого оттенка содержит эластичные волокна, из него состоит хрящевая часть ушной раковины, надгортанник, участки стенки наружного слухового прохода, некоторые хрящи гортани и хрящи мелких бронхов.

В эластичном хряще отсутствует кальций. В волокнистом хряще содержится меньше клеток, чем в первых двух видах хрящей, однако в нем намного больше коллагеновых пластин.

Он имеется в межпозвонковых дисках, менисках, лонном сочленении.

Костная ткань

Состоит из клеточных элементов и минерализованного межклеточного вещества.

Минеральные соли определяют прочность кости. Содержание кальция в кости уменьшается при недостатке витаминов, а также при нарушении гормонального обмена. Кости образуют скелет человека, а вместе с суставами — опорно-двигательный аппарат.

Массаж

Соединительнотканный массаж — это особая форма массажа рефлексогенных зон. Подушечками пальцев медленно массируют кожу и подкожную соединительную ткань, вызывая ответную реакцию, обуславливающую улучшение кровообращения в тканях и пораженных органах человека.