Свойства косинусов. Тригонометрические функции

– уж наверняка встретятся задания по тригонометрии. Тригонометрию часто не любят за необходимость зубрить огромное количество трудных формул, кишащих синусами, косинусами, тангенсами и котангенсами. На сайте уже когда-то давались советы, как вспомнить забытую формулу, на примере формул Эйлера и Пиля .

А в этой статье мы постараемся показать, что достаточно твёрдо знать всего пять простейших тригонометрических формул, а об остальных иметь общее представление и выводить их по ходу дела. Это как с ДНК: в молекуле не хранятся полные чертежи готового живого существа. Там содержатся, скорее, инструкции по его сборке из имеющихся аминокислот. Так и в тригонометрии, зная некоторые общие принципы, мы получим все необходимые формулы из небольшого набора тех, которые нужно обязательно держать в голове.

Будем опираться на следующие формулы:

Из формул синуса и косинуса сумм, зная о чётности функции косинуса и о нечётности функции синуса, подставив -b вместо b, получаем формулы для разностей:

  1. Синус разности : sin (a-b) = sin a cos (-b) +cos a sin (-b) = sin a cos b -cos a sin b
  2. Косинус разности : cos (a-b) = cos a cos (-b) -sin a sin (-b) = cos a cos b +sin a sin b

Поставляя в эти же формулы a = b, получаем формулы синуса и косинуса двойных углов:

  1. Синус двойного угла : sin 2a = sin (a+a) = sin a cos a +cos a sin a = 2sin a cos a
  2. Косинус двойного угла : cos 2a = cos (a+a) = cos a cos a -sin a sin a = cos 2 a -sin 2 a

Аналогично получаются и формулы других кратных углов:

  1. Синус тройного угла : sin 3a = sin (2a+a) = sin 2a cos a +cos 2a sin a = (2sin a cos a )cos a +(cos 2 a -sin 2 a )sin a = 2sin a cos 2 a +sin a cos 2 a -sin 3 a = 3sin a cos 2 a -sin 3 a = 3sin a (1-sin 2 a )-sin 3 a = 3sin a -4sin 3 a
  2. Косинус тройного угла : cos 3a = cos (2a+a) = cos 2a cos a -sin 2a sin a = (cos 2 a -sin 2 a )cos a -(2sin a cos a )sin a = cos 3 a-sin 2 a cos a -2sin 2 a cos a = cos 3 a-3sin 2 a cos a = cos 3 a-3(1-cos 2 a )cos a = 4cos 3 a-3cos a

Прежде чем двигаться дальше, рассмотрим одну задачу.
Дано: угол - острый.
Найти его косинус, если
Решение, данное одним учеником:
Т.к. , то sin a = 3,а cos a = 4.
(Из математического юмора)

Итак, определение тангенса связывает эту функцию и с синусом, и с косинусом. Но можно получить формулу, дающую связь тангенса только с косинусом. Для её вывода возьмём основное тригонометрическое тождество: sin 2 a +cos 2 a = 1 и разделим его на cos 2 a . Получим:

Так что решением этой задачи будет:

(Т.к. угол острый, при извлечении корня берётся знак +)

Формула тангенса суммы – ещё одна, тяжело поддающаяся запоминанию. Выведем её так:

Сразу выводится и

Из формулы косинуса двойного угла можно получить формулы синуса и косинуса для половинного. Для этого к левой части формулы косинуса двойного угла:
cos 2 a = cos 2 a -sin 2 a
прибавляем единицу, а к правой – тригонометрическую единицу, т.е. сумму квадратов синуса и косинуса.
cos 2a +1 = cos 2 a -sin 2 a +cos 2 a +sin 2 a
2cos 2 a = cos 2 a +1
Выражая cos a через cos 2 a и выполняя замену переменных, получаем:

Знак берётся в зависимости от квадранта.

Аналогично, отняв от левой части равенства единицу, а от правой - сумму квадратов синуса и косинуса, получим:
cos 2a -1 = cos 2 a -sin 2 a -cos 2 a -sin 2 a
2sin 2 a = 1-cos 2 a

И, наконец, чтобы преобразовать сумму тригонометрических функций в произведение, используем следующий приём. Допустим, нам нужно представить в виде произведения сумму синусов sin a +sin b . Введём переменные x и y такие, что a = x+y, b+x-y. Тогда
sin a +sin b = sin (x+y)+sin (x-y) = sin xcos y+cos xsin y+sin xcos y-cos xsin y = 2sin xcos y. Выразим теперь x и y через a и b.

Поскольку a = x+y, b = x-y, то . Поэтому

Сразу же можно вывести

  1. Формулу для разбиения произведения синуса и косинуса в сумму : sin a cos b = 0.5(sin (a+b) +sin (a-b))

Рекомендуем потренироваться и вывести самостоятельно формулы для преобразования в произведение разности синусов и суммы и разности косинусов, а также для разбиения в сумму произведений синусов и косинусов. Проделав эти упражнения, вы досконально освоите мастерство вывода тригонометрических формул и не потеряетесь даже на самой сложной контрольной, олимпиаде или тестировании.

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

Синусоида Косинусоида
y = sin x y = cos x
ОДЗ [-1; 1] ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Z cos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Z cos x = 1, при x = 2πk, где k ϵ Z
sin x = - 1, при x = 3π/2 + 2πk, где k ϵ Z cos x = - 1, при x = π + 2πk, где k ϵ Z
sin (-x) = - sin x, т. е. функция нечетная cos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период - 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk) cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk] возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk] убывает на промежутках
производная (sin x)’ = cos x производная (cos x)’ = - sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

  1. Y = tg x.
  2. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  3. Наименьший положительный период тангенсоиды равен π.
  4. Tg (- x) = — tg x, т. е. функция нечетная.
  5. Tg x = 0, при x = πk.
  6. Функция является возрастающей.
  7. Tg x › 0, при x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
  9. Производная (tg x)’ = 1/cos 2 ⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin 2 ⁡x Исправить

Разбираемся с простыми понятиями: синус и косинус и вычисление косинуса в квадрате и синуса в квадрате .

Синус и косинус изучаются в тригонометрии (науке о треугольниках с прямым углом).

Поэтому для начала вспомним основные понятия прямоугольного треугольника:

Гипотенуза - сторона, которая всегда лежит напротив прямого угла (угла в 90 градусов). Гипотенуза - это самая длинная сторона треугольника с прямым углом.

Оставшиеся две стороны в прямоугольном треугольнике называются катетами .

Также следует помнить, что три угла в треугольнике всегда имеют сумму в 180°.

Теперь переходим к косинусу и синусу угла альфа (∠α) (так можно назвать любой непрямой угол в треугольнике или использовать в качестве обозначение икс - «x» , что не меняет сути).

Синус угла альфа (sin ∠α) - это отношение противолежащего катета (сторона, лежащая напротив соответствующего угла) к гипотенузе. Если смотреть по рисунку, то sin ∠ABC = AC / BC

Косинус угла альфа (cos ∠α) - отношение прилежащего к углу катета к гипотенузе. Если снова смотреть по рисунку выше, то cos ∠ABC = AB / BC

И просто для напоминания: косинус и синус никогда не будут больше единицы, так как любой катит короче гипотенузы (а гипотенуза - это самая длинная сторона любого треугольника, ведь самая длинная сторона расположена напротив самого большого угла в треугольнике).

Косинус в квадрате, синус в квадрате

Теперь переходим к основным тригонометрическим формулам: вычисление косинуса в квадрате и синуса в квадрате.

Для их вычисления следует запомнить основное тригонометрическое тождество:

sin 2 α + cos 2 α = 1 (синус квадрат плюс косинус квадрат одного угла всегда равняются единице).

Из тригонометрического тождества делаем выводы о синусе:

sin 2 α = 1 - cos 2 α

синус квадрат альфа равен единице минус косинус двойного угла альфа и всё это делить на два.

sin 2 α = (1 – cos(2α)) / 2

​​​​​​​Из тригонометрического тождества делаем выводы о косинусе:

cos 2 α = 1 - sin 2 α

или более сложный вариант формулы: косинус квадрат альфа равен единице плюс косинус двойного угла альфа и также делим всё на два.

cos 2 α = (1 + cos(2α)) / 2

Эти две более сложные формулы синуса в квадрате и косинуса в квадрате называют еще «понижение степени для квадратов тригонометрических функций». Т.е. была вторая степень, понизили до первой и вычисления стали удобнее.

Примеры:

\(\cos{⁡30^°}=\)\(\frac{\sqrt{3}}{2}\)
\(\cos⁡\)\(\frac{π}{3}\) \(=\)\(\frac{1}{2}\)
\(\cos⁡2=-0,416…\)

Аргумент и значение

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника - он равен отношению прилежащего катета к гипотенузе.

Пример :

1) Пусть дан угол и нужно определить косинус этого угла.


2) Достроим на этом угле любой прямоугольный треугольник.


3) Измерив, нужные стороны, можем вычислить косинус.


Косинус числа

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с : \(\frac{π}{2}\) , \(\frac{3π}{4}\) , \(-2π\).

Например, для числа \(\frac{π}{6}\) - косинус будет равен \(\frac{\sqrt{3}}{2}\) . А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


Косинус для других часто встречающихся в практике чисел смотри в .

Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать - проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ ), делаем также, но \(60°\) откладываем по часовой стрелке.


И, наконец, угол больше \(360°\) (угол КОС ) - всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).


Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) - целых семь.

Как вы могли заменить, и косинус числа, и косинус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по числовой (тригонометрической) окружности:

Там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
- там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III четверти – фиолетовая область).


Связь с другими тригонометрическими функциями:

- того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
- того же угла (или числа): формулой \(1+tg^2⁡x=\)\(\frac{1}{\cos^2⁡x}\)
- и синусом того же угла (или числа): формулой \(ctgx=\)\(\frac{\cos{x}}{\sin⁡x}\)
Другие наиболее часто применяемые формулы смотри .

Решение уравнения \(\cos⁡x=a\)

Решение уравнения \(\cos⁡x=a\), где \(a\) – число не большее \(1\) и не меньшее \(-1\) т.е. \(a∈[-1;1]\):

\(\cos ⁡x=a\) \(⇔\) \(x=±\arccos⁡a+2πk, k∈Z\)


Если \(a>1\) или \(a<-1\), то решений у уравнения нет.

Пример . Решите тригонометрическое уравнение \(\cos⁡x=\)\(\frac{1}{2}\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси косинусов (оси \(y\)) отметим точку \(\frac{1}{2}\) .
4) Проведем перпендикуляр к оси косинусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: \(\frac{π}{3}\) ,\(-\)\(\frac{π}{3}\) .
7) Запишем все значения соответствующие этим точкам с помощью формулы \(x=t+2πk\), \(k∈Z\):
\(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\);


Ответ: \(x=±\frac{π}{3}+2πk\) \(k∈Z\)

Функция \(y=\cos{x}\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) - соответствующие этим углам значения косинуса, мы получим следующий график:


График данной называется и обладает следующими свойствами:

Область определения – любое значение икса: \(D(\cos{⁡x})=R\)
- область значений – от \(-1\) до \(1\) включительно: \(E(\cos{x})=[-1;1]\)
- четная: \(\cos⁡(-x)=\cos{x}\)
- периодическая с периодом \(2π\): \(\cos⁡(x+2π)=\cos{x}\)
- точки пересечения с осями координат:
ось абсцисс: \((\)\(\frac{π}{2}\) \(+πn\),\(;0)\), где \(n ϵ Z\)
ось ординат: \((0;1)\)
- промежутки знакопостоянства:
функция положительна на интервалах: \((-\)\(\frac{π}{2}\) \(+2πn;\) \(\frac{π}{2}\) \(+2πn)\), где \(n ϵ Z\)
функция отрицательна на интервалах: \((\)\(\frac{π}{2}\) \(+2πn;\)\(\frac{3π}{2}\) \(+2πn)\), где \(n ϵ Z\)
- промежутки возрастания и убывания:
функция возрастает на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
функция убывает на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
- максимумы и минимумы функции:
функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).