Что относится к плазменной панели. Достоинства и недостатки, присущие плазменным панелям. Проверьте срок гарантии

Плазма: технические аспекты

Даже самая современная технология когда нибудь должна уйти с рынка. Появляются все новые и новые решения, одно лучше другого. Сначала были кинескопные телевизоры, теперь их теснят плазменные панели. В последние 75 практически ничего не менялось - подавляющее большинство телевизоров выпускалось на базе одной технологии - т. н. электронно-лучевой трубки (ЭЛТ). В таком телевизоре `электронная пушка` испускает поток отрицательно заряженных частиц (электронов), проходящий через внутреннее пространство стеклянной трубки, т. е. кинескопа. Электроны `возбуждают` атомы фосфорного покрытия на широком конце трубки (экране), это заставляет фосфор светиться. Изображение формируется путем последовательного возбуждения различных участков фосфорного покрытия разных цветов, с различной интенсивностью.

Используя ЭЛТ, можно создавать четкие изображения с насыщенным цветом, однако имеется серьезный недостаток - кинескоп выходит слишком громоздким. Для того, чтобы увеличить ширину экрана в ЭЛТ-телевизоре, необходимо увеличить и длину трубки. В результате любой ЭЛТ-телевизор с большим экраном должен весить добрые несколько центнеров. Сравнительно недавно, в 90-е гг прошлого века на экранов магазинов появилась альтернативная технология - плоскопанельный плазменный дисплей. Такие телевизоры имеют широкие экраны, больше самых больших ЭЛТ, при этом они всего около 15 см. в толщину. `Бортовой компьютер` плазменной панели последовательно зажигает тысячи и тысячи крошечных точек-пикселей. В большинстве систем покрытие пикселей использует три цвета - красный, зеленый и синий. Комбинируя эти цвета телевизор может создавать весь цветовой спектр. Таким образом, каждый пиксель создан из трех ячеек, представляющих собой крошечные флуоресцентные лампы. Как и в ЭЛТ-телевизоре, для создания всего многообразия оттенков цветов меняется интенсивность свечения ячеек. Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц. Отдельные атомы газа содержат равное число протонов (частиц с положительным зарядом в ядре атома) и электронов. Электроны `компенсируют` протоны, таким образом, что общий заряд атома равен нулю. Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион. Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.


Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя из высвобождать энергию в виде фотонов. В плазменных панелях используются в основном инертные газы - неон и ксенон. В состоянии `возбуждения` они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза. Тем не менее, ультрафиолет можно использовать и для высвобождения фотонов видимого спектра. Внутри дисплея В плазменном телевизоре `пузырьки` газов неона и ксенона размещены в сотни и сотни тысяч маленьких ячеек, сжатых между двумя стеклянными панелями. Между панелями по обеим сторонам ячеек расположены также длинные электроды. `Адресные` электроды находятся за ячейками, вдоль задней стеклянной панели. Прозрачные электроды покрыты диэлектриком и защитной пленкой оксида магния (MgO). Они располагаются над ячейками, вдоль передней стеклянной панели. Обе `сетки` электродов перекрывают весь дисплей. Электроды дисплея выстроены в горизонтальные ряды вдоль экрана, а адресные электроды расположены вертикальными колонками. Как видно на рисунке ниже, вертикальные и горизонтальные электроды формируют базовую сетку.


Для того, чтобы ионизировать газ в отдельной ячейке, компьютер плазменного дисплея заряжает те электроды, которые на ней пересекаются. Он делает это тысячи раз за малую долю секунды, заряжая каждую ячейку дисплея по очереди. Когда пересекающиеся электроды заряжены, через ячейку проходит электрический разряд. Поток заряженных частиц заставляет атомы газа высвобождать фотоны света в ультрафиолетовом диапазоне. Фотоны взаимодействуют с фосфорным покрытием внутренней стенки ячейки. Как известно, фосфор - материал, под действием света сам испускающий свет. Когда фотон света взаимодействует с атомом фосфора в ячейке, один из электронов атома переходит на более высокий энергетический уровень. После чего электрон смещается назад, при этом высвобождается фотон видимого света.

Пиксели в плазменной панели состоят из трех ячеек-субпикселей, каждая из которых имеет свое покрытие - из красного, зеленого или синего фосфора. В ходе работы панели эти цвета комбинируются компьютером, создаются новые цвета пикселя. Меняя ритм пульсации тока, проходящего через ячейки, контрольная система может увеличивать или уменьшать интенсивность свечения каждого субпикселя, создавая сотни и сотни различных комбинаций красного, зеленого и синего цветов. Главное преимущество производства плазменных дисплеев - возможность создавать тонкие панели с широкими экранами. Поскольку свечение каждого пикселя определяется индивидуально, изображение выходит потрясающе ярким, причем при просмотре под любым углом. В норме насыщенность и контрастность изображения несколько уступает лучшим моделям ЭЛТ-телевизоров, но вполне оправдывает ожидания большинства покупателей. Главный недостаток плазменных панелей - их цена. Дешевле пары тысяч долларов новую плазменную панель купить невозможно, модели hi-end класса обойдутся в десятки тысяч долларов. Впрочем, с течением времени технология значительно усовершенствовалась, цены продолжают падать. Сейчас плазменные панели начинают уверенно теснить ЭЛТ-телевизоры. особенно это заметно в богатых, технологически развитых странах. В ближайшем будущем `плазма` придет в дома даже небогатых покупателей. Описание работы плазмы другими словами Плазменные панели немного похожи на ЭЛТ-телевизоры - покрытие дисплея использует способный светиться фосфоросодержащий состав. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку. Ячейки заполнены интернтыми, т. н. `благородными` газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. Будучи электрически нейтральной, плазма содержит равное число электронов и ионов и является хорошим проводником тока. После разряда плазма испускает ультрафиолетовое излучение, заставляющий светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия.

На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной испульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков. Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых обычно нуждаются в подсветке матрицы). Впрочем, обычные плазменные дисплеи в норме страдают от низкой контрастности. Это обусловлено необходимостью постоянно подавать низковольтный ток на все ячейки. Без этого пиксели будут `включаться` и `выключаться` как обычные флуоресцентные лампы, то есть очень долго, непозволительно увеличивая время отклика. Таким образом, пиксели должны оставаться выключенными, в то же время испуская свет низкой интенсивности, что, конечно, не может не сказаться на контрастности дисплея. В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1. К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас - уже 10000:1+. Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, `плазму` можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати. Тем не менее, век плазменных панелей недолог - совсем недавно среднестатистический ресурс панели равнялся 25000 часов, сейчас он почти удвоился, но проблему это не снимает. В пересчете на часы работы плазменный дисплей обходится дороже LCD. Для большого презентационного экрана разница не очень существенная, однако, если оснастить плазменными мониторами многочисленные офисные компьютеры, выигрыш LCD становится очевидным для компании-покупателя. Рейтинг 5.00 /5 (1 Голос)

Подробности Техцентр Киевский Москва 84992490989

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Фил Коннор
Ноябрь 2002г

Что лучше: плазменная панель или LCD телевизор?

Это зависит от многих факторов. Тема обсуждения двух технологий, которые обрабатывают и отображают входной видео- или компьютерный сигнал совершенно по-разному, сложна и изобилует многочисленными деталями. Обе технологии быстро прогрессируют, а их себестоимость и розничные цены снижаются одновременно. В ближайшем будущем между этими технологиями неизбежно столкновение в линейке 40-дюймовых (по диагонали) мониторов/телевизоров.

Ниже перечисляются некоторые преимущества каждой технологии; также даётся объяснение связи между этими преимуществами и покупателями той и другой технологии в различных областях применения:

1) ВЫЖИГАНИЕ ЭКРАНА

Для LCD можно не учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. В технологии LCD (жидкокристаллический дисплей) применяется по сути флуоресцентная тыловая лампа, свет от которой идёт через пиксельную матрицу, содержащую жидкокристаллические молекулы и поляризованный субстрат для придания формы яркости и цвету. Жидкий кристалл, находящийся в LCD, в действительности применяется в твёрдом состоянии.

У плазменной технологии, напротив, следует учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. Статические изображения начнут «выжигать» отображаемую картинку уже через короткий промежуток времени - в некоторых случаях, спустя приблизительно 15 минут. Хотя «выжигание» можно обычно «снять», выводя на весь экран серое или сменяющие друг друга одноцветные поля, оно тем не менее является существенным фактором, препятствующим развитию плазменной технологии.

Преимущество: LCD

Для таких областей применения, как отображение в аэропортах информации о полётах, статические картинки-витрины в розничных магазинах или постоянные информационные показатели, LCD–монитор будет наилучшим вариантом.

2) КОНТРАСТНОСТЬ

Плазменная технология добилась значительных успехов в разработке изображений повышенной контрастности. Panasonic утверждает, что их плазменные дисплеи имеют контрастность 3000:1. Плазменная технология просто блокирует подачу электропитания (посредством сложных внутренних алгоритмов) на определенные пикселы для того, чтобы сформировать тёмные или чёрные пикселы. Эта методика действительно даёт тёмные чёрные цвета, хотя иногда и в ущерб проработке полутонов.

В LCD технологии, напротив, нужно увеличивать подачу энергии, чтобы сделать пикселы более тёмными. Чем больше напряжение, подаваемое на пиксел, тем темнее LCD-пиксел. Несмотря на достигнутые улучшения LCD технологии в плане контрастности и уровня чёрного, даже лучшие производители LCD технологии, например Sharp, могут обеспечить контрастность лишь между 500:1 и 700:1.

Для просмотра DVD фильмов, где обычно много очень светлых и очень темных сюжетов и в компьютерных играх с характерным для них обилием темных сцен, плазменная панель имеет явное преимущество.

3) ДОЛГОВЕЧНОСТЬ

Производители LCD утверждают, что долговечность их мониторов/телевизоров составляет от 50.000 до 75.000 часов. LCD-монитор может работать столь же долго, сколько работает тыловая лампа (которую в действительности можно заменять), так как свет от неё, подвергаясь воздействию жидкокристаллической призмы, обеспечивает яркость и цвет. Призма является субстратом, и поэтому на самом деле ничего не выжигает.

С другой стороны, в плазменной технологии на каждый пиксел подаётся электрический импульс, который возбуждает инертные газы - аргон, неон и ксенон (люминофоры), необходимые для обеспечения цвета и яркости. Когда электроны возбуждают люминофор, атомы кислорода рассеиваются. Изготовители плазмы оценивают долговечность люминофоров и, следовательно, самих панелей в 25.000 – 30.000 часов. Люминофоры не могут быть заменены. Не существует такого явления, как закачка новых газов в плазменный дисплей.

Преимущество: LCD, в два и более раза.

В промышленных/коммерческих областях применения (например, в витринах информационных табло, где дисплеи должны работать круглосуточно), где как правило не слишком высокие требования к качеству изображения, LCD будет наилучшим вариантом для длительного использования.

4) НАСЫЩЕННОСТЬ ЦВЕТА

Цвет более точно воспроизводится в плазменных панелях, поскольку вся информация, необходимая для воспроизведения любого оттенка в спектре, содержится в каждой ячейке. Каждый пиксел содержит синий, зелёный и красный элементы для точной передачи цвета. Насыщенность, достигаемая благодаря конструкции пиксела плазменной панели, обеспечивает, на мой взгляд, самые живые цвета среди дисплеев всех типов. Координаты цвета в цветовом пространстве в хороших плазменных панелях намного более точны, чем в LCD.

В LCD по физическим условиям прохождения волн сквозь длинные тонкие жидкокристаллические молекулы сложнее добиться эталонной точности и живости цветопередачи. Цветовая информация имеет преимущество вследствие меньшего размера пиксела в большинстве LCD–телевизоров. Однако при одинаковом размере пиксела цвет будет не таким выразительным, как у плазменных панелей.

Плазменная технология превосходит LCD при показе видео, особенно, в динамичных сценах. LCD предпочтительна для отображения статических компьютерных изображений, не только из-за выжигания, но и потому, что она также обеспечивает прекрасные однородные цвета.

5) ВЫСОТА НАД УРОВНЕМ МОРЯ

Как было упомянуто выше, в LCD применяется технология задней подсветки в комбинации с жидкокристаллическими молекулами. В принципе, нет ничего, что служило бы препятствием для размещения этого монитора на высокогорье, как и нет никаких реальных ограничений. Этим объясняется использование LCD экранов в качестве главного обзорного экрана для отображения видеоинформации о полётах.

Поскольку ячейка плазменного экрана в плазменных панелях в действительности является стеклянной оболочкой, наполненной инертным газом, то разреженный воздух приводит к росту давления газа внутри этой оболочки и увеличивает мощность, требуемую для нормального охлаждения плазменной панели, в результате чего появляется характерное гудение (жужжание) и слишком заметный шум от вентилятора. Эти проблемы возникают на высоте приблизительно 2.000 метров.

Преимущество: LCD

На высоте Денвера и выше для любых областей применения я бы использовал LCD мониторы.

6) УГОЛ ОБЗОРА

Производители плазменных мониторов всегда утверждали, что их изделия имеют угол обзора 160° - по сути, это так и есть. LCD добилась значительных успехов в увеличении угла обзора. В LCD-мониторах нового поколения фирм Sharp и NEC материал ЖК-основы значительно улучшен; расширен и динамический диапазон. Но несмотря на эти успехи, при просмотре монитора/телевизора под большими углами заметное отличие между двумя технологиями всё ещё сохраняется.

Преимущество: плазменная панель

Каждая ячейка плазменной панели представляет собой самомстоятельный источник света, что позволяет добиться превосходной яркости каждого пиксела. Отсутствие устройства задней подсветки (как в LCD) тоже хорошо с точки зрения угла обзора.

7) ИСПОЛЬЗОВАНИЕ С КОМПЬЮТЕРОМ

LCD эффективно отображает статические компьютерные изображения, без мерцаний и выжигания экрана.

Плазменной панели труднее обрабатывать статические изображения от компьютера. Хотя их отображение выглядит удовлетворительным, проблемой является выжигание экрана; представляет трудность и эффект ступенчатости, встречающийся в панелях с меньшей разрешающей способностью при отображении статичного текста (Power Point). Видеоизображения с компьютера получаются качественными, но возможно некоторое мерцание, зависящее как от заводского качества панели, так и от отображаемого разрешения. Плазменная панель, конечно же, по-прежнему выигрывает по углу обзора.

Преимущество: LCD, за исключением больших углов обзора.

8) ВОСПРОИЗВЕДЕНИЕ ВИДЕО

Здесь первенство за плазменными панелями, благодаря прекрасному качеству при отображении сцен с быстрым движением, высокому уровню яркости, контраста и цветовой насыщенности.

На LCD могут быть заметны цветовые шлейфы во время показа видеосцен с быстрым движением, так как эта технология медленнее отрабатывает изменения цвета. Причиной этого являются световые призмы, которые должно быть появляются вследствие воздействия напряжения, управляющего отклонением светового луча. Чем более высокое напряжение подаётся на кристалл, тем темнее становится изображение в этой части LCD панели. По этой же причине у LCD более низкие уровни контрастности.

Преимущество: плазменная панель, с большим запасом.

DVD или любое потоковое видео, TV или HDTV – от любого из этих видеоисточников плазменная панель покажет неразмытое, с высокой контрастностью (в зависимости от плазмы), насыщенное цветами изображение. Несмотря на значительные успехи в этом направлении, LCD по-прежнему испытывает некоторые трудности при сравнительно больших размерах экрана, хотя при меньших размерах смотрится превосходно.

9) ОБЪЕМЫ ПРОИЗВОДСТВА И СТОИМОСТЬ

Хотя обе технологии испытывают трудности при создании мониторов большого размера, большую плазменную панель все же оказалось сделать легче, производители уже выпустили плазменные панели с диагональю более 60 дюймов. Хотя такие мониторы всё ещё стоят дорого, они продемонстрировали свою эффективность и надёжность. ЖК-основу большого размера для LCD телевизора трудно изготовить без дефектных пикселов. На данный момент самый большой LCD экран - это 40–дюймовая коммерческая версия фирмы NEC. До этого Sharp наращивал свою линейку LCD-мониторов от 20 до 22 и затем до 30 дюймов, а сейчас начинает поставлять на рынок новую 37–дюймовую широкоэкранную панель.

Преимущество: плазменная панель.

Несмотря на то, что себестоимость и цены на изделия обеих технологий снижаются (за исключением цен на большие плазменные панели), плазменная панель по-прежнему имеет более низкую себестоимость производства и поэтому имеет преимущество в цене. 50–дюймовые плазменные панели чрезвычайно популярны и быстро отвоевывают долю рынка у ранее доминировавших 42–дюймовых панелей. Такая тенденция для плазменных панелей, имеющих более высокий процент выхода годных изделий в производстве и, как следствие, более низкую себестоимость, будет, вероятно, сохраняться в течение по меньшей мере 2-х лет.

10) ТРЕБОВАНИЯ ПО НАПРЯЖЕНИЮ

Поскольку в LCD для получения света используется флуоресцентная лампа задней подсветки, у этой технологии гораздо меньшие требования по напряжению, чем у плазменных панелей. С другой стороны, при использовании плазменной панели необходимым (трудновыполнимым) условием является подача питания на сотни тысяч прозрачных электродов, которые возбуждают свечение ячеек люминофора.

Плазменная панель

Плазменный телевизор

Газоразрядный экран (также широко применяется английская калька «плазменная панель ») - устройство отображения информации , монитор , основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря в плазме . (См. также: SED).

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды , образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

Особенности конструкции:

  • суб-пиксель плазменной панели обладает следующими размерами 200 мкм x 200 мкм x 100 мкм;
  • передний электрод изготовляется из оксида индия и олова , поскольку он проводит ток и максимально прозрачен.
  • при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома , несмотря на его непрозрачность;
  • для создания плазмы ячейки обычно заполняются газом - неоном или ксеноном (реже используется гелий и/или аргон , или, чаще, их смеси).

Химический состав люминофора:

Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ -мониторах. В последних моделях PDP обновление экрана происходит на частотах 400-600 Гц, что не позволяет человеческому глазу замечать мерцания экрана.

Принцип действия

Работа плазменной панели состоит из трех этапов:

  1. инициализация , в ходе которой происходит упорядочивание положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подается импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочивание расположения ионовой газовой среды, на второй ступени разряд в газе, а на третьей - завершение упорядочивания.
  2. адресация , в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подается положительный импульс (+75 В), а на шину сканирования отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
  3. подсветка , в ходе которой на шину сканирования подается положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, меняя полярность импульсов обеспечивается многократный разряд ячейки.

Один цикл «инициализация - адресация - подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста . В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.

Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит емкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение проходя через переднюю стеклянную пластину попадает в глаз зрителя.

Примечания

Ссылки

Литература

  • Мухин И. А. Принципы развертки изображения и модуляция яркости свечения ячейки плазменной панели . «Труды учебных заведений связи № 168», Санкт-Петербург, 2002, СПбГУТ, стр.134-140.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Снежинский физико-технический институт -

филиал федерального государственного автономного образовательного учреждения высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ» (СФТИ НИЯУ МИФИ)

Кафедра ВТ и ЭТД

(наименование кафедры)

РЕФЕРАТ

по курсу: «Информатика»

тема: «Плазменная панель»

Группа: БВ12Д

(номер студенческой группы)

Студент: Кошелев А.А.

(подпись)

Преподаватель: Орлова Н.В.

(подпись)

г.Снежинск, 2011 г.

Введение

1. Устройство дисплея

2. Плазменная технология

4. Принцип работы

5. От светящейся трубки к пикселю плазменной панели

6. Преимущества

7. Недостатки

8. Применение

9. Самый большой и дорогой плазменный телевизор в мире

Введение

Плоские дисплеи в будущем заменят привычные электронно-лучевые трубки телевизоров. HDTV, цифровая конвергенция и DVD высокого разрешения знаменуют смерть ЭЛТ-телевизоров. Конечно, этого ещё не произошло, но ждать осталось недолго. Пару-тройку десятилетий назад таким же был переход с чёрно-белых телевизоров на цветные. Но в нашу эпоху, с учётом быстрого внедрения новинок в жизнь и их удешевлением, уже через несколько лет телевизор с лучевой трубкой будет смотреться анахронизмом. Но при покупке плоскопанельного телевизора возникает проблема: необходимо выбрать между двумя технологиями, существенно отличающимися друг от друга: между плазмой и ЖК.

Что касается компьютерных мониторов, то здесь выбор простой - победителем на рынке однозначно можно назвать ЖК. Но вот в области телевизоров обе технологии продолжают конкурировать. В нашей статье мы постараемся рассмотреть конкурирующие технологии, выделить их преимущества и недостатки, чтобы вы смогли сделать обоснованный выбор.

Устройство дисплея

Если вы знакомы с технологиями дисплеев, то можете переходить напрямую к следующему разделу. Здесь же мы рассмотрим базовые различие в технологиях ЭЛТ, плазменных и ЖК-дисплеев.

Все они используют общий подход для вывода полного цветового спектра: разделение цветов на базовые. Вместо сложных пикселей, способных выдавать множество оттенков, разработчики остановили свой выбор на пикселях, состоящих из трёх суб-пикселей, каждый из которых отображает оттенки своего цвета: красного, зелёного или синего.

Если пользователь находится на удалении от экрана, то он уже не может отличить суб-пиксели друг от друга и воспринимает их как единое целое. Поэтому подобные пиксели могут составлять полноцветную картинку - через смешение красных, зелёных и синих суб-пикселей. Используя все три цвета в равных пропорциях, можно создавать оттенки серого - от белого до чёрного.

Выбор в качестве основных цветов красного, зелёного и синего может шокировать людей, интересующихся живописью, поскольку там основными цветами являются пурпурный, жёлтый и голубой. Однако здесь мы говорим об аддитивных основных цветах, путём сложения которых можно получить все остальные, - поэтому ими и стали красный, зелёный и синий (RGB).

Ниже показан пример реализации подобной модели на электронно-лучевой трубке.

Вы можете видеть суб-пиксели каждого из основных цветов.

Все современные технологии дисплеев - ЭЛТ, ЖК и плазма - используют этот принцип. В следующих разделах мы подробно рассмотрим его реализацию в каждой из технологий.

Плазменная технология

Начало

Многие даже и не подозревают, но плазменная технология не такая уж и новая, даже несмотря на то, что её промышленное использование началось в начале 90-х годов. Исследования плазменных дисплеев проводились в США ещё четыре десятилетия назад, в 60-х годах. Технология была разработана четырьмя учёными: Битцером (Bitzer), Слоттоу (Slottow), Вилсоном (Willson) и Аророй (Arora). Первый прототип дисплея появился довольно быстро, в 1964 году. Матрица, революционная для свого времени, имела размер 4 на 4 пикселя, которые излучали монохромный голубой цвет. Затем, в 1967 году, размер матрицы был увеличен до 16x16 пикселей, на этот раз она излучала монохромный тёмно-красный цвет (с помощью неона).

Вполне естественно, что эта технология заинтересовала производителей, и в 1970 году к работе присоединились такие компании, как IBM, NEC, Fujitsu и Matsushita. К сожалению, из-за отсутствия рынка, оправдывающего промышленное производство, к 1987 году разработки в США были практически остановлены, и последней компанией, поднявшей лапки кверху, была IBM. В США осталась горстка учёных, продолживших работать над этой технологией, однако основные исследования были перенесены в Японию. Первая коммерческая модель появилась на рынке в начале 90-х годов. Fujitsu первой преодолела 21" барьер.

Сегодня большинство крупных производителей бытовой техники, включая компании LG, Pioneer, Philips, Hitachi и другие, предлагают плазменные панели.

Plasma Display Panel (PDP)

Всего лишь пятнадцать-двадцать лет назад лет назад писатели-фантасты в один голос предрекали появление в будущем огромных и абсолютно плоских телевизионных экранов. И вот теперь сказка наконец-то стала былью, и такой экран может купить любой желающий.

Устройство плазменных панелей

Принцип действия плазменной панели основан на свечении специальных люминофоров при воздействии на них ультрафиолетового излучения. В свою очередь это излучение возникает при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напряжением образуется проводящий “шнур”, состоящий из ионизированных молекул газа (плазмы). Поэтому-то газоразрядные панели, работающие на этом принципе, и получили название “газоразрядных ” или, что тоже самое – “плазменных ” панелей.

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон.

Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора.

В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости.

Люминофоры излучают один из основных цветов: красный , зелёный или синий . Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично.

Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному.

Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова , поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

Зелёный : Zn 2 SiO 4:Mn 2+ / BaAl 12 O 19:Mn 2+
Красный : Y 2 O 3:Eu 3+ / Y0,65Gd 0,35 BO 3:Eu 3
Синий : BaMgAl 10 O 17:Eu 2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

В ЖК-панелях принцип формирования картинки принципиально иной — там источник света находится позади матрицы, а для разделения цветов на RGB используются фильтры.

Почему плазменные панели лучше

Во-вторых , плазменная панель исключительно универсальны и позволяют использовать её не только в качестве телевизора, но и как дисплей персонального компьютера с большим размером экрана. Для этого все модели плазменных панелей помимо видеовхода (как правило, это обычный AV вход и вход S-VHS) оборудуются еще и VGA-входом. Поэтому такая панель будет незаменима при проведении презентаций, а также при использовании в качестве многофункционального информационного табло при ее подключении к выходу персонального компьютера или ноутбука. Ну, а поклонники домашнего мультимедиа и компьютерных игр будут просто в восторге: только представьте себе насколько выигрышнее будет выглядеть по сравнению с 17″ монитором на 42″ экране изображение, к примеру, кабины космического звездолета или виртуальное поле боя с космическими пришельцами!

В-третьих , “картинка” плазменной панели по своему характеру очень напоминает изображение в “настоящем” кинотеатре. Благодаря этому своему “кинематографическому” акценту плазма сразу же полюбилась поклонникам “домашнего кино” и прочно утвердилась как кандидат N1 в качестве высококачественного средства отображения в домашних кинотеатрах высокого класса. Тем более что размера экрана в 42″ в большинстве случаев оказывается вполне достаточно. Очевидно в расчете на “кинотеатральное” применение большинство плазменных панелей выпускается с форматом изображения 16:9, ставшем de-facto стандартом для систем домашнего театра.

В-четвертых , при столь солидном экране плазменные панели имеют исключительно компактные размеры и габариты. Толщина панели с размером экрана в 1 метр не превышает 9-12 см, а масса составляет всего 28-30 кг. По этим параметрам сегодня ни один другой тип средств отображения не может составит плазме хоть какую-то конкуренцию. Достаточно сказать, что цветной кинескоп со сравнимым размером экрана имеет глубину 70 см и весит более 120-150 кг! Проекционные телевизоры с обратной проекцией также особой стройностью не отличаются, а телевизоры с фронтальной проекцией, как правило, имеют малые яркости изображения. Светотехнические же параметры плазменных PDP панелей исключительно высоки: яркость изображения свыше 700 кд/м 2 при контрастности не менее 500:1. И что очень важно, нормальное изображение обеспечивается в чрезвычайно широком угле зрения по горизонтали: в 160О. То есть уже сегодня PDP вышли на уровень самых передовых рубежей качества, достигнутых кинескопами за 100 лет своей эволюции. А ведь большеэкранные плазменные панели серийно выпускаются менее 5 лет, и они находятся в самом начале пути своего технологического развития.

В-пятых , плазменные панели чрезвычайно надежны. По данным фирмы Fujitsu их технический ресурс составляет не менее 60 000 часов (у очень хорошего кинескопа 15 000-20 000 часов), а процент брака не превышает 0.2%. То есть на порядок меньший общепринятых для цветных кинескопных телевизоров 1.5-2 %.

В-шестых , PDP практически не подвержены воздействию сильных магнитных и электрических полей. Это позволяет, к примеру, использовать их в системе домашнего театра совместно с акустическими системами с неэкранированными магнитами. Иногда это может быть важным, так как в отличие от кинотеатральной акустики многие “обычные” HI-FI колонки выпускаются с неэкранированной магнитной цепью. В традиционном домашнем кинотеатре на основе телевизора использовать эти колонки в качестве фронтальных очень затруднительно ввиду их сильного влияния на кинескоп телевизора. А в AV-системе на основе PDP – сколько угодно.

В-седьмых , благодаря малой глубине и относительно небольшой массе плазменные панели легко разместить в любом интерьере и даже повесить на стену в удобном для этого месте. С другим типом дисплея подобный фокус вряд ли удастся.

Прочие достоинства плазменной панели

  • Большая диагональ . Производить ЖК-матрицы больших диагоналей очень дорого и потому экономически невыгодно. С плазменными панелями всё ровно наоборот.
  • Панель не мерцает . Не мерцает, а значит не утомляет глаза, в отличие от обычных ЭЛТ-телевизоров с частотой обновления 50 Гц.
  • Лучшая цветопередача . Современные плазменные телевизоры способны отображать до 29 миллиардов цветовых оттенков. Это по праву считается одним из основных преимуществ плазмы.
  • Большие углы обзора . Ячейки плазменной панели светятся сами, им не нужны никакие «затворы», как в ЖК-панелях, регулирующие количество проходящего света. Поэтому угол обзора плазменной панели — почти 180 градусов во всех направлениях.
  • Время отклика . Время отклика плазменной панели аналогично ЭЛТ, то есть гораздо меньше, чем у любого ЖК-телевизора.
  • Яркость и контрастность . Контрастность плазменных панелей значительно выше, чем у ЖК-телевизоров. У современной панели она может достигать 10000:1. А яркость плазм абсолютно равномерна, поскольку подсветка в традиционном её понимании отсутствует.
  • Компактные габариты . Среднестатистическая плазменная панель не толще 10 см. Её можно легко прикрутить к стене, заказав специальный кронштейн.

Ложка дёгтя

  • Остаточное свечение . Эффект остаточного свечения характерен только для плазменных панелей. Это связано с тем, что регулярно активируемый газ излучает больше ультрафиолетового цвета. Неравномерность уровня яркости возникает, когда наработка разных ячеек от момента включения сильно отличается друг от друга. Говоря проще, если вы долго смотрите один и тот же канал, то его знак будет некоторое время просвечиваться на экране после переключения канала. Производители панелей, как могут, борются с этим недостатком, применяя скринсерверы и другие более хитрые технологии.
  • Деградация люминофора . Этот тот же процесс, что можно наблюдать и в обычных ЭЛТ-телевизорах. Время жизни панели исчисляется до потери половины яркости экрана. Для плазмы последнего поколения – это примерно 60000 часов.
  • Зернистость . Дешёвые плазменные телевизоры без поддержки HD страдают этим эффектом больше всего. Обращайте на него внимание при выборе бюджетной модели, и, если вдруг он будет раздражать, — отложите покупку до тех пор, пока не сможете приобрести модель более высокого класса.
  • Шумность . Большая часть выпускаемых сегодня плазм имеет вентиляторы охлаждения. Имейте это в виду и обязательно послушайте, насколько сильно шумит панель перед покупкой.

Таким образом, единственным серьезным на сегодня недостатком плазменных панелей по большому счету является только их большая цена. Впрочем по сравнению со стоимостью других устройств отображения информации с аналогичным размером экрана их относительная цена в пересчете на 1 см (или дюйм) диагонали изображения оказывается не столь большой.

Разбор характеристик

Принцип дальнейшего повествования будет таков: мы возьмём типовую табличку технических характеристик плазменной панели и пройдёмся по тем её строкам, на которые стоит обратить внимание. Итак:

Диагональ, разрешение

Диагонали плазменных панелей начинаются с 32-дюймов и заканчиваются на 103-х. Из всего этого диапазона, как уже было сказано выше, в России пока лучше всего продаются 42-дюймовые панели с разрешением 853×480 точек. Это разрешение называется EDTV (Extended Definition Television) и подразумевает под собой «телевидение повышенной чёткости». Такого телевизора будет достаточно для комфортного времяпрепровождения, поскольку в России пока не существует бесплатного телевидения высокой чёткости (High Definition TV — HDTV). Однако HDTV-телевизоры, как правило, технически более совершенны, лучше обрабатывают сигнал и даже способны «подтягивать» его до уровня HDTV. Получается, конечно, не очень, но эти попытки ценны сами по себе. К тому же, в магазинах уже можно купить фильмы, записанные в формате HD DVD.

Покупая HDTV-телевизор, обратите внимание на формат поддерживаемого сигнала. Самый распространённый — 1080i, то есть, 1080 строк с чересстрочным чередованием. Чересстрочное чередование принято считать не очень хорошим, поскольку будут заметны зубчики по краям объектов, но этот недостаток нивелируется высоким разрешением. Поддержка более совершенного формата 1080p с прогрессивной развёрткой пока встречается только на очень дорогих телевизорах последнего, девятого поколения. Существует также альтернативный формат 1080i — это 720p с меньшим разрешением, но зато с прогрессивной развёрткой. На глаз различие между двумя картинками найти будет сложно, так что при прочих равных 1080i предпочтительнее. Впрочем, большое количество телевизоров одновременно поддерживают и 720p, и 1080i, так что в этом плане никаких проблем с выбором у вас возникнуть не должно.

Пару слов скажем о различных технологиях улучшения изображения. Технологически так сложилось, что качество картинки панели в немалой степени зависит и от разнообразных программных ухищрений. У каждого производителя они свои, и бывает, что только их грамотное функционирование определяет все видимые глазу отличия в картинке между двумя телевизорами разных марок, но одной стоимости. Однако выбирать телевизор по количеству этих технологий всё же не стоит — лучше всмотреться в качество их работы, благо любоваться плазмами можно в любом нормальном магазине видеотехники сколько угодно времени.

Выбирая диагональ, в первую очередь имейте в виду – чем она больше, тем дальше от телевизора нужно сидеть. В случае 42-дюймовой панели ваш любимый диван должен быть удалён от неё на расстояние не менее трёх метров. Можно, конечно, сесть и ближе, но особенности формирования изображения на панели вас наверняка будет раздражать и мешать просмотру.

Соотношение сторон

Все плазменные телевизоры имеют панели с . Стандартная телевизионная картинка 4:3 на таком экране будет смотреться нормально, просто неиспользуемая площадь экрана по бокам изображения будет залита чёрным. Или серым, если телевизор позволяет менять цвет заливки. Телевизор может попробовать растянуть изображение на весь экран, но результат этой операции, как правило, выглядит печально. В некоторых магазинах плазмы «вещают» именно в таком режиме — видимо, персоналу просто лень искать в меню галочку отключения функции масштабирования. В в России уже началось. По умолчанию такое соотношение сторон используется только в HDTV.

Яркость

Существуют две характеристики панели, связанные с яркостью, — это яркость панели и яркость всего телевизора. Яркость панели нельзя оценить на готовом продукте, потому что перед ней всегда стоит светофильтр. Яркость же телевизора — это наблюдаемая яркость экрана после прохождения света через фильтр. Фактическая яркость телевизора никогда не превышает половины яркости панели. Однако в характеристиках телевизора указывается изначальная яркость, которую вы никогда не увидите. Это первый маркетинговый трюк.

Ещё одна особенность цифр, указываемых в спецификациях, связана с методом их получения. В целях защиты панели её яркость в расчёте на точку уменьшается пропорционально увеличению суммарной площади засветки. То есть если вы видите в характеристиках значение яркости 3000 кд/м2, знайте — она получается только при небольшой засветке, например, когда на чёрном фоне отображается несколько белых букв. Если инвертировать эту картинку, мы получим уже, например, 300 кд/м2.

Контрастность

С этим показателем также связаны две характеристики: контрастность при отсутствии окружающего света и в присутствии оного. Значение, указываемое в большинстве спецификаций, — это контрастность, замеренная в тёмной комнате. Таким образом, в зависимости от освещения, контрастность может падать с 3000:1 до 100:1.

Интерфейсные разъёмы

Подавляющее число плазменных телевизоров имеет, как минимум, SCART, VGA, S-Video, компонентный видеоинтерфейс, а также обычные аналоговые аудиовходы и выходы. Рассмотрим эти и другие разъёмы подробнее:

  • SCART — количество этих разъёмов может достигать трёх. Одно время они считались наиболее совершенными, пока не появился HDMI. Через SCART одновременно передаются аналоговый видеосигнал и стереозвук.
  • HDMI — кто-то может назвать это эволюционным преемником SCART. Через HDMI можно передавать HD-сигнал в разрешении 1080p вместе с восьмиканальным звуком. Благодаря выдающейся пропускной способности и миниатюрности разъёма, интерфейс HDMI поддерживают уже некоторые видеокамеры и DVD-плееры. А компания Panasonic поставляет со своими плазмами пульт с функцией HDAVI Control, позволяющей управлять не только телевизором, но и другой техникой, подключённой к нему через HDMI.
  • VGA — это обычный компьютерный аналоговый разъём. Через него к плазме можно подключить компьютер.
  • DVI-I — цифровой интерфейс для подключения всё того же компьютера. Однако встречается и другая техника, работающая через DVI-I.
  • S-Video — чаще всего используется для подключения DVD-проигрывателей, игровых приставок и, в редких случаях, компьютера. Обеспечивает хорошее качество изображения.
  • Компонентный видеоинтерфейс — интерфейс для передачи аналогового сигнала, когда каждая его составляющая идёт по отдельному кабелю. Благодаря этому компонентный сигнал — самый качественный их всех аналоговых. Для передачи звука используются аналогичные RCA-разъемы и кабели — каждый канал «бежит» по своему проводу.
  • Композитный видеоинтерфейс (на одном разъёме RCA) — в противовес компонентному обеспечивает наихудшее качество передачи сигнала. Используется один кабель и, как результат, — возможна потеря цветности и чёткости изображения.

Акустическая система

Не стоит питать иллюзий, что встроенные в телевизор маломощные динамики могут звучать хорошо. Даже если производитель клянётся в реализации многочисленных «улутшательных» технологии, звучать плазма будет на уровне, достаточном разве что для просмотра новостей. Впрочем, некоторые наиболее честные производители на наличии колонок внимания потребителя даже не акцентируют — да, они есть, но не более того. Насладиться настоящим звуком позволят только внешние и не самые дешёвые акустические системы.

Энергопотребление

Энергопотребление плазменного телевизора меняется в зависимости от отображаемой картинки. Поэтому не пугайтесь, если вам скажут что скромная 42-дюймовая панель «ест» 360 Вт. Уровень, указываемый в спецификации, отражает максимальное значение. При полностью белом экране потреблять плазменная панель будет уже 280 Вт, а при полностью чёрном — 160 Вт.

В заключение

В заключение хочется дать пару советов. Самый главный — тщательно проверяйте панель на наличие «битых» пикселей, а точнее, точек, которые постоянно горят одним цветом. В случае обнаружения — требуйте замены, поскольку это считается недопустимым браком вне зависимости от количества таких пикселей. Не дайте недобросовестному продавцу провести себя — до пяти «битых» пикселей формально допустимы лишь для ЖК-панелей, да и то не самого высокого класса. И ещё имейте в виду, что некоторые модели телевизоров поставляются вместе с напольной подставкой, то есть, тумбочкой. Этот комплект выйдет дороже, но зато подставка будет точно гармонировать с телевизором и обеспечит ему хорошую устойчивость.

Общая оценка материала: 4.9

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Отец видеозаписи Александр Понятов и AMPEX