Основные понятия и термины фармакокинетики. Белоусов Ю.Б., Моисеев В.С., Лепахин В.К

Фармакокинетика

Фармакокинетика (от греч. Pharmakon - лекарство, яд, зелья, kinetikos - то, что касается движения) - раздел фармакологии, изучающий поступления (пути введения), всасывания (адсорбции), раздел, преобразование (биотрансформацию) лекарственных средств в организме, выведения (выведение, элиминацию) их из организма, а также эффективность и переносимость препаратов в зависимости от этих процессов.

Для определения фармакокинетических параметров регистрируют количество медикамента в крови, принимая во внимание, что в большинстве случаев существует зависимость между концентрацией вещества в крови и ее количеством в области рецептора. На основе полученных данных строят график - фармакокинетической кривой, где на оси ординат отмечают концентрацию вещества в плазме крови, а на оси абсцисс - срок исследования.

Основные понятия и термины фармакокинетики

Камера - условное понятие в фармакокинетике, под которым понимают пространство, имеющее определенный объем и концентрацию лекарств в этом пространстве. Понятие "камера" не отражает какой анатомический пространство. Это единица формализованной фармакокинетического системы, принятой в мире для математического моделирования процессов, происходящих в организме при взаимодействии лекарств с организмом.

Выделяют центральную камеру, за которую принимают кровь и органы, имеющие сильное кровоснабжение: сердце, почки, легкие, эндокринные органы, печень, кишечник. К периферической камеры относят органы, имеющие менее интенсивное кровоснабжение кожа, подкожная клетчатка, мышцы, жировая ткань и др.

Условно простейшая модель взаимодействия лекарственного вещества с организмом рассматривается как однокамерная или многокамерная модель и характеризуется концентрацией лекарств (СД) и объемом распределения (Vd).

Концентрация лекарства (С k) - количество препарата в определенном объеме крови в конкретный момент после введения лекарств в организм. Концентрацию лекарств в организме определяют спектрофотометрическим, хроматографическим, ферментным, радиоиммунным и другими методами и выражают в мг / л, мкг / мл, мм / л или в%.

Динамика концентрации лекарств в организме зависит от пути введения, дозы, физико-химических, квантово-химических свойств, длительности действия препарата и др. Самая фармакокинетическая модель - однокамерная модель, где организм представляется в виде гомогенной единой камеры. Однокамерные модели применяют для определения концентрации лекарства в крови, плазме и сыворотке, а также в моче.

Фармакокинетические процессы в наибольшей степени соответствуют процессам в организме в случаях двух- и трехкамерной модели.

Объем распределения (Vd) (воображаемый гипотетический объем распределения препарата) - условный объем жидкости, необходимый для равномерного распределения (раствора) введенной дозы лекарств к концентрации, определяется в крови в момент исследования (литров на килограмм массы тела - л / кг).

Объем распределения лекарств в определенной степени характеризует степень проникновения лекарств из плазмы крови и внеклеточной жидкости в ткани и создание депо лекарственного препарата в органах. Например, для антибиотиков группы аминогликозидов, которые мало растворимые в липидах, объем распределения близок к объему внеклеточной жидкости, а для хорошо растворимых в липидах тетрациклинов - значительно выше. Если препарат активно проникает в органы и ткани, это свидетельствует о высоком значении объема распределения. Объем распределения зависит от путей введения, дозы, физико-химических свойств лекарств (растворимость в липидах и воде, степень ионизации и полярности, молекулярная масса), а также возраста, пола, количества жидкости в организме, патологического состояния организма (заболеваний печени, почек, сердечно-сосудистой системы, кишечника).

Однокамерная модель может быть использована для определения концентрации лекарственных средств в таких средах организма, как цельная кровь (или сыворотка, плазма) и моча. Следует отметить, что моча может быть применена для исследования веществ, способных быстро распределяться между различными средами (жидкостями и тканями) организма. Суть данной модели в том, что она предусматривает однотипную динамику изменений концентрации веществ в плазме и тканях, а также быстрее установления равновесия между процессами поступления и выведения их из организма.

На самом деле, для большинства препаратов характерно медленное всасывание и выведение из тканей. К тому же, согласно принятой концепции по однокамерной модели, скорость элиминации лекарственных средств постоянна. Но скорость элиминации многих веществ напрямую зависит от их концентрации в крови. Так полученные сведения при исследованиях с применением однокамерной модели для большинства веществ являются некорректными.

Площадь под кинетической кривой "концентрация - время" (area under curve, AUC). AUC при линейной кинетической кривой (линейной зависимости) пропорциональна количеству лекарств, находящихся в системном кровотоке.

Биодоступность (F) определяется относительным количеством лекарств, выделяется из лекарственной формы, инактивируется в печени при первом прохождении, поступает в общий круг кровообращения и взаимодействует с тканевыми рецепторами. Биодоступность выражают в%.

Биодоступность зависит от химического строения вещества, технологии изготовления лекарственной формы и от степени абсорбции лекарств в кровь из пищеварительной при эн теральному введении, биотрансформации при первом пассаже через печень, скорости рассасывания при парентеральном введении препарата. Биодоступность лекарств при введении непосредственно в кровь принимают за 100% и при других путях введения - выражают в %.

Биоэквивалентность (сравнительная биодоступность) - отношение количества лекарств, поступающего в кровь при применении в той или иной лекарственной форме или в лекарственных препаратах, которые выпускают различные фирмы. Изучение биоэквивалентности позволяет сравнивать препараты в клинической практике, что очень важно для определения эффективности медикаментов различных производителей.

Биофаза - участок непосредственного взаимодействия лекарств с рецептором или тканевой структурой, включая клеточную оболочку и внешнюю, митохондриальную, эндоплазматическая, лизосомальную, рибосом.

Общий клиренс - условный объем плазмы или крови, освобождается ("очищается") от лекарственного средства за единицу времени; выражают в объемных единицах (л / мин., мл / мин.). Почечный клиренс (С12) отражает элиминацию препарата из организма.

Период полувыведения - Т1 / 2 (период полувыведения) - фармакокинетический показатель срока, за который количество медикамента в теоретической камере или его концентрация в исследуемой ткани, а именно в крови, уменьшается на 50 %. Считается, что за один период полувыведения выводится 50% введенного медикамента, за два периода - 75%, за три - 90%.

Константа элиминации (Кel) - процент уменьшения концентрации лекарства в крови за единицу времени. Чем больше Кel, тем быстрее лекарственное средство выводится из крови.

Фармакокинетический процесс лекарственных средств можно представить в виде следующих взаимосвязанных этапов.

1. Пути введения (поступления) препаратов в организм.

2. Высвобождение лекарств из лекарственной формы.

3. Абсорбция лекарственного средства - проникновение через биологические мембраны в сосудистое русло и в ткани к специфическому клеточного рецептора.

4. Распределение лекарственного средства в биологических жидкостях, органах и тканях.

5. Метаболизм (преобразования) лекарственных средств - это биохимические процессы преобразования (метаболизма) лекарственных средств с изменением их фармакологических свойств и образованием метаболитов, которые могут выводиться из организма.

6. Вывод (экскреция, элиминация) лекарственного средства или его метаболитов из организма.

ШКОЛА КЛИНИЧЕСКОЙ ФАРМАКОЛОГИИ

ФАРМАКОКИНЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ И ПРАКТИЧЕСКАЯ МЕДИЦИНА

В.Г. Белолипецкая, Я.В. Суханов

Фармакокинетические исследования и практическая медицина

В.Г Белолипецкая, Я.В. Суханов

Государственный научно-исследовательский центр профилактической медицины Росздрава, Москва

В статье в доступной для практических врачей форме даются основные понятия о фармакокинетике как о науке о закономерностях поведения веществ во внутренней среде организма, а также об основных параметрах фармакокинетических исследований. В статье приводятся наглядные и очень убедительные примеры о большой практической значимости данной науки как для создания новых лекарственных форм препаратов, так и для подбора оптимального режима терапии.

Ключевые слова: фармакокинетика, клиренс, площадь под кривой.

РФК 2005; 2: 43-47.

Pharmacokinetic researches and practical medicine

V.G. Belolipetskaya, YV. Sukhanov

State Research Center for Preventive Medicine of Roszdrav, Moscow

An article gives in a comprehensive manner the main idea of pharmacokinetics, as the science about rules of substances behavior in the internal environment of the organism, as well as of main parameters of pharmacokinetic researches. The article provides vivid and very persuasive examples of high practical importance of this science both for creating new medical forms of drugs and for choosing the optimal of therapy regime .

Key words: pharmacokinetics, clearance, area under curve

Rational Pharmacother. Cardiol. 2005; 2: 43-47.

Любой практический врач, вероятно, без затруднений вспомнит несколько случаев из своей профессиональной практики, когда назначенная, казалось бы оптимальная, терапия не приносила ожидаемого результата или, напротив, давала аномальные реакции. Приходилось с сожалением назначать другой, менее эффективный препарат. А между тем, возможно, не стоило отказываться от первого, лучшего, варианта лечения, нужно было лишь изменить схему применения препарата. Решить эту и другие важные практические проблемы можно с помощью фармакокинетических исследований.

Фармакокинетика - наука о кинетических закономерностях поведения инородных веществ во внутренней среде организма. Она не анализирует механизм взаимодействия между химическим веществом и чувствительным к нему субстратом, но позволяет изучать условия для наилучшего обеспечения подобного взаимодействия или, напротив, для его предотвращения . Фармакокинетика - молодая наука, насчитывающая всего около полувека, но уже занявшая достойное место среди наук о здоровье. На сегодняшний день является обязательным проведение фармакокинетических исследований при создании новых лекарственных препаратов и но-

вых лекарственных форм. В развитых странах при назначении целого ряда лекарств, имеющих узкий терапевтический диапазон и/или опасные побочные эффекты (например, при назначении сердечных гли-козидов, цитостатиков, антиконвульсантов и др.), обязательным является терапевтический мониторинг концентраций действующего вещества, а при необходимости и его метаболитов. Незаменимы фармакокинетические исследования при выяснении вопроса об истинной рефрактерности больного к препарату или неверной системы дозирования, при изучении проблемы толерантности к лекарственным средствам, при решении других научных и практических задач.

Целью фармакокинетического исследования является определение фармакокинетических параметров, дающих количественную оценку процессов, происходящих в организме с лекарственным веществом. Первым этапом фармакокинетического исследования является сбор биологических образцов (чаще всего крови или мочи) в определенные моменты времени и определение в них концентрации изучаемого лекарственного вещества. В результате исследователь получает т.н. фармакокинетическую кривую (график «концентрация-время») Для расчета фар-

макокинетических параметров по экспериментальным данным в настоящее время существует два подхода: метод математического моделирования и вне-модельный метод. В первом случае организм рассматривают как несколько однородных камер или компартментов (чаще всего один или два). Одноком-партментная модель рассматривает организм как единую однородную камеру, в которую препарат поступает, равномерно распределяется и выводится. Двухкомпартментная - как две: центральную, в состав которой, как правило, входят кровь и активно перфузируемые органы, и периферическую, включающую все остальные ткани. Препарат поступает в центральный компартмент, из него - в периферический, между ними устанавливается равновесие. Элиминация осуществляется из центрального компарт-мента. Иногда прибегают к помощи и более сложных, физиологически обоснованных моделей, т.н. перфузионных. Однако использование сложных моделей требует привлечения очень серьезного математического аппарата, что далеко не всегда выполнимо, поэтому применяется только при решении специальных задач. Метод математического моделирования позволяет рассчитывать фармакокинетические параметры после предварительного построения теоретической кривой «концентрация - время», более или менее удовлетворительно описывающей экспериментальные точки. При расчетах с помощью вне-модельного метода плавная кривая не строится, а через экспериментальные точки проводится ломаная линия.

Наиболее важными и информативными для клиницистов являются следующие фармакокинетические параметры.

Площадь под фармакокинетической кривой (AUC - area under curve) - интегральный параметр, пропорциональный общему количеству лекарственного вещества в системном кровотоке.

Максимальная концентрация (Cmax) характеризует эффективность и безопасность лекарственного средства, ее значения не должны выходить за границы терапевтического диапазона.

Время достижения максимальной концентрации (Тmax) при линейной зависимости «концентрация - эффект» позволяет оценить время наступления максимального эффекта препарата.

Объем распределения (Vd) - условный параметр, характеризующий степень захвата препарата тканями из плазмы или сыворотки крови, образно говоря, это такой объем, в котором надо растворить всю попавшую в организм дозу препарата, чтобы получить концентрацию, равную его концентрации в плазме. Он не эквивалентен объему циркулирующей крови и может быть значительно выше: так для силь-

но липофильного пропранолола (Обзидан, Индерал, Анаприлин) он в среднем в 100 раз превышает объем циркулирующей крови из-за значительного распределения в жировую и другие слабо васкуляризо-ванные ткани.

Клиренс (С1) характеризует скорость «очищения» организма от лекарственного вещества (условно смысл его можно представить как ту часть кажущегося объема распределения, которая «очищается» от препарата в единицу времени).

Константа абсорбции (каЬ) характеризует скорость поступления лекарственного вещества в системный кровоток при внесосудистом введении.

Константа элиминации (ке|) характеризует скорость всей совокупности процессов, приводящих к выведению препарата из организма (экскреция и метаболизм).

Период полувыведения (Т1/2) обратно пропорционален КЕ1_, показывает, за какое время концентрация препарата в организме уменьшается вдвое.

Биодоступность ("0 показывает, какая часть дозы лекарственного препарата при внесосудистом введении достигает системного кровотока.

Проиллюстрируем важность изучения фармакокинетики лекарственных веществ и необходимости учета их фармакокинетических параметров для оптимизации терапии. Для всех лекарственных веществ важна такая характеристика, как терапевтический диапазон концентраций, под которым мы понимаем ту область концентраций лекарственного вещества в сыворотке или плазме крови, которая ограничена снизу минимальным значением, при котором наблюдается терапевтический эффект, а сверху - минимальным значением, при котором наблюдаются токсические эффекты. Безусловно, это некая обобщенная характеристика, позволяющая, тем не менее, оценить уровень эффективности и безопасности при применении того или иного лекарственного средства. Терапевтический диапазон для разных лекарственных веществ может быть весьма различным: так, он очень узок, например, для сердечных гликозидов (для дигоксина верхняя граница всего в 1,5 - 2 раза выше нижней), а для большинства р-блокаторов терапевтический диапазон широкий (для пропранолола верхняя граница превышает нижнюю приблизительно в 10- 20 раз). Понятно, что чем шире терапевтический диапазон лекарственного вещества, тем меньше риск «выйти» из него и получить нежелательный побочный эффект. Наибольшие проблемы для препаратов с узким терапевтическим диапазоном возникают, если симптомы передозировки препарата совпадают с симптомами недостигнутого терапевтического уровня, т.е. с симптомами заболевания. Решить вопрос об увеличении или уменьшении дозы в

этом случае можно лишь с помощью фармакокинетического исследования. На рис. 1 представлены фармакокинетические профили лидокаина . Один из них получен при в/в введении по схеме, предложенной разработчиком и состоящей из 2 этапов: болюс 80 мг струйно (в течение 3 - 4 мин, чтобы не превысить терапевтический диапазон), затем постоянная инфузия со скоростью 2 мг/мин. Однако хорошо видно, что при такой схеме приблизительно к 20-й минуте концентрация опускается ниже терапевтического уровня и остается такой приблизительно в течение получаса (а у некоторых больных в течение нескольких часов). Не зная хода фармакокинетической кривой, нельзя было бы сказать, что происходит в этот промежуток времени: например, является ли желудочковая тахикардия следствием превышения терапевтической концентрации или падения ниже терапевтического уровня. Опираясь на полученные данные, удалось предложить более рациональную схему внутривенного введения лидокаина: болюс 80 мг (струйно в течение 3 - 4 мин), затем постоянная инфузия со скоростью 2 мг/мин и на фоне этой ин-фузии на 10-й минуте от начала введения - повторный болюс 40 мг (струйно в течение 3 - 4 мин). Подобная схема позволяет удерживать концентрацию препарата приблизительно в середине терапевтического диапазона в течение всего интервала наблюдения. Хотелось бы подчеркнуть, насколько необходимым для некоторых препаратов является терапевтический мониторинг. В странах, позволяющих себе реально заботиться о здоровье населения, определение концентраций в крови для многих препаратов является обязательным. И это находит отражение даже в листовках-вкладышах.

Абсолютно необходимо изучение фармакокинетики при создании новых лекарственных препаратов, в т.ч. новых лекарственных форм и генериков . Задача фармакокинетических исследований в этом случае - не допустить на фармацевтический рынок некачественные препараты и открыть дорогу достойным и зачастую более доступным, с точки зрения

Фармакокинетические параметры суматриптана у здоровых добровольцев после однократного введения суппозиториев и таблеток

фармакоэкономики, лекарственным средствам. Примером такого исследования может быть выполненное лабораторией фармакокинетических исследований ФГУ «ГНИЦ ПМ Росздрава» сравнительное изучение 2 препаратов суматриптана: зарегистрированных в России таблеток зарубежной фирмы и отечественных суппозиториев, предлагаемых для регистрации на территории РФ. Актуальность появления на отечественном фармацевтическом рынке ректальной лекарственной формы суматриптана обусловлена, с одной стороны, его высокой клинической эффективностью, а с другой стороны, недостатками других зарегистрированных в России лекарственных форм . Так, у значительной части пациентов, страдающих мигренью, во время приступа отмечается тошнота и рвота, что обусловливает неудовлетворительность перорального применения. Инъекционное применение для многих пациентов неприемлемо вследствие выраженности негативных побочных реакций или страха перед инъекцией, кроме того, системы для подкожного введения достаточно дороги. Весьма эффективное интраназальное введение суматриптана характеризуется значительной вариабельностью показателей фармакокинетики и неприятными органолептическими свойствами (плохой вкус). Задачей выполненного нами исследования было определить место новых отечественных суппозиториев среди уже имеющихся препаратов суматриптана, сравнив их с наиболее популярной лекарственной формой - таблетками для перорального приема. На рис. 2 представлены средние фармакокинетические профили у 18 здоровых добровольцев при однократном применении таблеток и суппозиториев. Ощутимая разница между значениями средних концентраций наблюдалась только в течение первого часа после введения препаратов на «восходящей» ветви фармакокинетической кривой, различие было максимальным (до 9 нг/мл) и достоверным через 15 и 30 мин; достоверная разница между значениями средних концентраций наблюдалась еще в 3 точках на «нисходящей» ветви, однако она была не столь существенной - менее 1 - 4 нг/мл. Этот результат свидетельствует о более быстром поступлении суматриптана в системный кровоток при применении суппозиториев по сравнению с таблетками. Такой же вывод следует из анализа фармакокинетических параметров суматриптана (см. таблицу). Значения Ттах были значительно и достоверно ниже при использовании суппозиториев. Средние значения Стах также достоверно отличались, но разница между ними была не столь выраженной (около 4 нг/мл). Таким образом, по скорости достижения максимальной (и соответственно терапевтической) концентрации отечественный препарат был наиболее близок к парентераль-

Параметр Суппозитории Таблетки

Т Л сэ О < 71,0 ± 12,7 75,4 ± 16,2

Ттах (ч) 0,57 ± 0,29** 1,36 ± 0,45

Стах (нг/мл) 26,1 ± 4,74* 22,2 ± 5,5

Т1/2 (ч) 1,83 ± 0,52 2,05 ± 0,40

С1 (л /ч) 680±108 640±150

V, (л) 1811 ±662 1914±705

* р< 0.005; ** р < 0.000005

Рисунок 1. Средние фармакокинетические профили лидокаина у больных после внутривенного введения при различной схеме дозирования (пунктирной линией обозначены границы терапевтического диапазона) .

Концентрация,

Время после введения препарата, час

Рисунок 2. Средние фармакокинетические профили суматриптана у здоровых добровольцев после однократного введения таблеток и суппозиториев (* р<0,05, ** р<0,005, *** р<0,001, **** р<0,00005)

ной и интраназальной лекарственным формам, обеспечивающим максимально быстрое снятие головной боли и сопутствующих ей симптомов мигрени. При этом в отличие от назального спрея, вариабельность фармакокинетических параметров при применении суппозиториев не была столь значительной и не возникало проблем с негативными органолептическими свойствами. Быстрое нарастание до очень высоких значений (свыше 70 нг/мл) концентрации суматриптана при применении подкожных инъекционных систем сопровождается значительным количеством побочных эффектов. Кроме того, эта лекарственная форма неприемлема для значи-

тельной части пациентов из-за страха перед инъекцией и/или достаточно высокой стоимости. При применении суппозиториев максимальная концентрация нарастала быстро, но не достигала значений, характеризующихся высокой частотой и выраженностью побочных эффектов, применение ее не вызывало затруднений у испытуемых. Главными недостатками пероральных таблеток являются невозможность их использования в случаях, когда приступ мигрени сопровождается тошнотой и рвотой, а также медленное нарастание концентрации суматриптана в плазме крови и, следовательно, более медленное избавление пациентов от симптомов мигрени. В случае при-

менения суппозиториев концентрация суматриптана нарастала приблизительно втрое быстрее, чем при приеме таблеток, а применение суппозиториев возможно при любой симптоматике. Кроме того, отечественный препарат характеризовался лучшей переносимостью (2 случая нежелательных побочных явлений по сравнению с 4 при приеме таблеток). Полученные результаты позволили сделать вывод о предпочтительности суппозиториев по сравнению с таблетками и целесообразности их применения в клинической практике.

Мы остановились здесь на самых общих понятиях фармакокинетики, даже не упомянув о таких важных

и интересных ее разделах, как стереофармакокинетика, фармакогенетика, изучение связи «фармакокинетические параметры - терапевтический эффект» и многое другое. Нашей целью было привлечь внимание самого широкого круга практических врачей к важности информации о фармакокинетических свойствах назначаемых ими препаратов, сделать привычным использование этой информации в своей повседневной клинической практике. Лишь учитывая все характеристики лекарственного средства, современный клиницист сможет сделать правильный выбор среди сотен тысяч препаратов, которые предлагает мировой фармацевтический рынок.

Литература

1. Соловьев В.Н., Фирсов А.А., Филов В.А. Фармакокинетика.1980; М.: Медицина

2. Пиотровский В.К., Смирнова Е.Б., Метелица В.И., Мазур Н.А. Фармакокинетика лидокаина и обоснование нового режима его введения больным острым инфарктом миокарда. Кардиология. 1979; 8: 23-27.

3. Марцевич С.Ю., Суханов Я.В., Белолипецкая В.П, Кутишенко Н.П. Исследования биоэквивалентности как способ доказательства идентичности оригинального препарата и препарата-дженерика. Российский кардиологический журнал. 2005;2(52):С. 76-78.

4. Bertin L., Brion N., Farkkila M., Gobel H., Wessely P A dose-defining study of sumatriptan suppositories in the acute treatment of migraine. Int.J. Clin.Pract. 1999;v.53(8):593-598.

5. Dahlof C.G. Sumatriptan: pharmacological basis and clinical results. Curr. Med.Res.Opin 2001;117, Suppl.1:35-45.

6. Duquesnoy C., Mamet J.P, Summer D., Fuseau E. Comparative clinical pharmacocinetics of single doses of sumatriptan following subcutaneous, oral, rectal and intranasal administration. Eur. J.Pharm.Sci. 1998;6(2):99-104.

7. Fowler PA., Lacey L.F., Thomas M., Keen O.N., Tanner R.J.N., Bader N.S. The clinical pharmacology, pharmacokinetics and metabolism of sumatriptan. Eur. Neurol.1991;31:291-294.

8. Kunka R.L., Hussey E.K., Shaw S., Warner P, Aubert B. et al. Safety, tolerability and pharmacokinetic of sumatriptan suppositories following single and multiple doses in healthy volunteers. Chephalalgia 1997;17(4):532-540.

  • 4. Рецепт, его структура, правила выписывания. Формы рецептурных бланков. Особые отметки на рецептурном бланке.
  • 5. Основные лекарственные формы, их характеристика. Зависимость биодоступности от лекарственной формы.
  • 8.2.1. Твердые лекарственные формы
  • Мягкие лекарственные формы
  • Жидкие лекарственные формы
  • Газообразные лекарственные формы
  • 6.Мягкие лекарственный формы
  • 7.Твердые лекарственные формы
  • 10. Фармакокинетика и фармакодинамика – определение, разделы. Основные показатели фармакокинетики.
  • 11. Основные пути введения лекарственных средств в организм, их сравнительная характеристика. Зависимость биодоступности скорости развития, выраженности и продолжительности эффекта от путей введения.
  • Энтеральное введение: преимущества и недостатки
  • Виды парентерального введения препаратов
  • Парентеральное введение: плюсы и минусы
  • Ингаляции
  • Плюсы и минусы ингаляционного введения
  • Ректальный, вагинальный и уретральный пути введения
  • 12. Желудочно-кишечный тракт как путь введения лекарственных веществ. Основные механизмы всасывания лекарственных веществ. Факторы, влияющие на всасывание лекарственных средств из жкт.
  • Механизмы всасывания лекарственных веществ в организме.
  • 13. Биодоступность лекарственных средств. Определение. Факторы, влияющие на биодоступность. Примеры.
  • Понятие абсолютной биологической доступности
  • Понятие относительной биологической доступности
  • 15. Биотрансформация лекарственных средств в организме, ее основные пути, их характеристика. Факторы, влияющие на биотрансформацию.
  • 16. Пути выведения лекарственных веществ из организма. Значение учета их. Элиминация. Период полувыведения. Клиренс. Факторы, влияющие на выведение лекарственных веществ.
  • 17. Виды доз. Широта терапевтического действия, её значение. Терапевтический индекс. Понятие о лекарстве и яде.
  • 19. Фармакодинамика. Типовые механизмы действия лекарственных веществ. Примеры.
  • 20. Роль рефлекторных механизмов в действии лекарственных веществ. Препараты рефлекторного типа действия. Примеры.
  • 21. Побочное действие лекарственных веществ. Побочные эффекты аллергической и неаллергической природы. Примеры.
  • 23. Изменение действия лекарственных веществ при их повторном введении. Понятие о привыкании, сенсибилизации, кумуляции.
  • 24. Зависимость фармакологических эффектов от физико-химических свойств и химической структуры лекарственного вещества.
  • 25. Зависимость эффекта от количества введенного вещества, его концентрации и путей введения, длительности действия. Понятие о лекарственном веществе и яде.
  • 26. Основные виды лекарственной терапии: этиотропная, патогенетическая, симптоматическая, заместительная, профилактическая. Примеры.
  • 27. Значение индивидуальных особенностей организма (пола, возраста) и его состояния для проявления действия лекарственных веществ.
  • 28. Особенности применения лекарственных средств при беременности.
  • 29. Особенности применения лекарственных средств в педиатрии и в гериатрии. Способы расчета доз для детей.
  • 30. Понятие о лекарственном взаимодействии. Виды лекарственных взаимодействий: фармацевтическое, фармакокинетическое, фармакодинамическое. Примеры. Лекарственная несовместимость.
  • 31. Комбинированное действие лекарственных веществ. Виды синергизма. Использование в клинике. Понятие о синергоантагонизме.
  • 32. Принципы оказания неотложной помощи при аллергических реакциях. Анафилактический шок
  • 33. Основные принципы терапии острых отравлений. Понятие об антидотной терапии.
  • 34. Основные принципы терапии острых отравлений. Способы удаления всосавшегося и невсосавшегося яда.
  • 10. Фармакокинетика и фармакодинамика – определение, разделы. Основные показатели фармакокинетики.

    Фармакокинетика - это раздел фармакологии о всасывании, распределении в организме, депонировании, метаболизме и выведении веществ.

    Положения Фармакокинетики

    I. Пути введения лекарственных веществ – энтеральные (пероральный, сублингвальный, ректальный), парентеральные без нарушения целостности кожных покровов (ингаляционный, вагинальный) и все виды инъекций (подкожные, внутримышечные, внутривенные, внутриартериальные, внутриполостные, с введением в спинно-мозговой канал и др.). II. Всасывание лекарственных средств при разных путях введения в основном происходит за счет пассивной диффузии через мембраны клеток, путем фильтрации через поры мембран и пиноцитоза). Факторы, влияющие на всасывание: растворимость вещества в воде и липидах, полярность молекулы, величина молекулы, рН среды, лекарственная форма; биодоступность (количество неизмененного вещества в плазме крови относительно исходной дозы препарата), учитывающая потери вещества при всасывании из желудочно-кишечного тракта и при первом прохождении через печеночный барьер (биодоступность при внутривенном введении принимают за 100 %). Распределение лекарственных веществ в организме в большинстве случаев оказывается неравномерным и зависит от состояния биологических барьеров – стенки капилляров, клеточных мембран, плацентарного и гематоэнцефалического барьеров. Трудности преодоления последнего обусловлены его структурными особенностями: эндотелий капилляров мозга не имеет пор, в них отсутствует пиноцитоз, они покрыты глиальными элементами, выполняющими функцию дополнительной липидной мембраны (в ткань мозга легко проникают липофильные молекулы). Распределение лекарственных веществ зависит также от сродства последних к разным тканям и от интенсивности тканевого кровоснабжения; обратимое связывание лекарственных веществ с плазменными (преимущественно альбумином) и тканевыми белками, нуклеопротеидами и фосфолипидами способствует их депонированию. III. Биотрансформация (превращение) лекарственных веществ в организме (метаболическая трансформация, конъюгация или метаболическая трансформация) – превращение лекарственных веществ путем окисления (с помощью микросомальных ферментов печени при участии НАДФ, О 2 и цитохрома Р-450), конъюгация – присоединение к лекарственному веществу или его метаболиту химических группировок и молекул эндогенных соединений (глюкуроновой и серной кислот, аминокислот, глютатиона, ацетильных и метильных групп); результат биотрансформации – образование более полярных и водорастворимых соединений, легко удаляющихся из организма. В процессе биотрансформации активность вещества обычно утрачивается, что лимитирует время его действия, а при заболеваниях печени или блокаде метаболизирующих ферментов продолжительность действия увеличивается (понятие об индукторах и ингибиторах микросомальных ферментов). IV. Выведение лекарственных веществ из организма в основном осуществляется с мочой и желчью: с мочой выводятся вещества путем фильтрации и активной кальциевой секреции; скорость их выведения зависит от скорости реабсорбции в канальцах за счет простой диффузии. Для процессов реабсорбции важное значение имеет рН мочи (в щелочной среде быстрее выводятся слабые кислоты, в кислой – слабые основания); скорость выведения почками характеризует почечный клиренс (показатель очищения определенного объема плазмы крови в единицу времени). При выделении с желчью лекарственные вещества покидают организм с экскрементами и могут подвергаться в кишечнике повторному всасыванию (кишечнопеченочная циркуляция). В удалении лекарственных веществ принимают участие и другие железы, включая молочные в период лактации (возможность попадания в организм грудного ребенка лекарств); одним из принятых фармакокинетических параметров является период полувыведения вещества (период полужизни Т1/2), отражающий время, в течение которого содержание вещества в плазме снижается на 50 %.

    Основные показатели фармакокинетики

    лекарственных препаратов

    – Константа скорости абсорбции(Ка), характеризующая скорость их поступле­ния в организм.

    – Константа скорости элиминации (Кel), характеризующая скорость их био­трансформации в организме.

    – Константа скорости экскреции(Кex), характеризующая скорость их выведе­ния из организма (через легкие, кожу, пищеварительный и мочевой тракт).

    – Период полуабсорбции (Т 1/2 , a) как время, необходимое для всасывания их поло­винной дозы из места введения в кровь (Т 1/2 , a = 0,693/Ка).

    – Период полураспределения (Т 1/2 , a) как время, за которое их концентрация в крови достигает 50 % от равновесной между кровью и тканями.

    – Период полувыведения(Т 1/2) как время, за которое их концентрация в крови уменьшается наполовину (Т 1/2 = 0,693/Кel).

    – Кажущаяся начальная концентрация (С 0), которая была бы достигнута в плаз­ме крови при их внутривенном введении и мгновенном распределении в орга­нах и тканях.

    – Равновесная концентрация (Сss), устанавливаемая в плазме (сыворотке) крови при их поступлении в организм с постоянной скоростью (при прерывистом введении (приеме) через одинаковые промежутки времени в одинаковых до­зах выделяют максимальную (Сss max) и минимальную (Сss min) равновесные концентрации).

    – Объем распределения (Vd) как условный объем жидкости, в котором необхо­димо растворить поступившую в организм их дозу (D) для получения концен­трации, равная кажущейся начальной (С0).

    – Общий (Clt), почечный (Clr) и внепочечный (Cler) клиренсы, характеризую­щие скорость освобождения от них организма и, соответственно, выведение их с мочой и другими путями (прежде всего с желчью) (Clt = Clr + Cler).

    – Площадь под кривой «концентрация-время» (AUC), связанная с их другими фа­рмакокинетическими характеристиками (объемом распределения, общим клиренсом), при их линейной кинетике в организме величина AUC пропор­циональна дозе, попавшей в системный кровоток.

    – Абсолютная биодоступность (f) как часть дозы, достигшая системного крово­тока после внесосудистого введения (%).

    Показателем элиминации лекарственного препарата является клиренс (мл/мин). Выделяют общий, почечный и печеночный клиренс. Общий клиренс есть сумма по­чечного и печеночного клиренсов и определяется как объем плазмы крови, который очищается от лекарственного препарата за единицу времени. Клиренс используется для расчета дозы лекарственного препарата, необходимой для поддержания его рав­новесной концентрации (поддерживающей дозы) в крови. Равновесная концентрация устанавливается, когда количество абсорбирующегося и количество вводимого пре­парата равны друг другу.

    В изучении фармакокинетики лекарственных препаратов важное место занимает математическое моделирование.

    Существует много математических методов и моделей, от простейших одномер­ных до разного уровня сложности многомерных.

    Использование математического моделирования позволяет в деталях с выведе­нием характерных констант исследовать фармакокинетику лекарственных препа­ратов, как по времени, так и пространству (по органам и тканям).

    Фармакодинамика - раздел, изучающий биологические эффекты веществ, их локализацию и механизм действия.

    Основные Положения Фармакодинамики

    I. Виды фармакологического действия лекарств (местное, резорбтивное, прямое и косвенное, рефлекторное, обратимое, необратимое, преимущественное, избирательное, специфическое действие). Во всех случаях лекарственное вещество взаимодействует с определенными биохимическими субстратами; активные группировки макромолекулярных субстратов, взаимодействующих с веществами, получили название рецепторов, а рецепторы, взаимодействие с которыми обеспечивает основное действие вещества, называются специфическими. Сродство вещества к рецептору, приводящее к образованию с ним комплекса, обозначается термином «аффинитет»; способность вещества при взаимодействии с рецептором вызывать тот или иной эффект называется внутренней активностью; вещество, при взаимодействии с рецептором вызывающее биологический эффект, называется агонистом (они и есть внутренне активные); агонизм может быть полным (вещество вызывает максимальный эффект) и частичным (парциальным). Вещества, при взаимодействии с рецептором не вызывающие эффекта, но устраняющие эффект агониста, называются антагонистами. II. Типовые механизмы действия лекарственных веществ (миметическое, литическое, аллостерическое, изменение проницаемости мембран, освобождение метаболита от связи с белками и др.). III. Фармакологические эффекты – прямые и косвенные. IV. Виды фармакотерапевтического действия (этиотропное, патогенетическое, симптоматическое, главное и побочное).

    Механизмы действия лекарственных средств.

    Подавляющее большинство лекарственных средств оказывает лечебное действие путем изменения деятельности физиологических систем клеток, которые вырабатывались у организма в процессе эволюции. Под влиянием лекарственного вещества в организме, как правило, не возникает новый тип деятельности клеток, лишь изменяется скорость протекания различных естественных процессов. Торможение или возбуждение физиологических процессов приводит к снижению или усилению соответствующих функций тканей организма.

    Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток. Подробно механизмы действия лекарственных веществ изучаются в курсе общей или экспериментальной фармакологии. Ниже мы приводим лишь некоторые примеры основных механизмов действия лекарственных средств.

    Действие на специфические рецепторы . Рецепторы - макромолекулярные структуры, избирательно чувствительные к определенным химическим соединениям. Взаимодействие химических веществ с рецептором приводит к возникновению биохимических и физиологических изменений в организме, которые выражаются в том или ином клиническом эффекте.

    Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, - антагонистами. Антагонизм может быть конкурентным и неконкурентным. В первом случае лекарственное вещество конкурирует с естественным регулятором (медиатором) за места связывания в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть устранена большими дозами вещества-агониста или естественного медиатора.

    Разнообразные рецепторы разделяют по чувствительности к естественным медиаторам и их антагонистам. Например, чувствительные к ацетилхолину рецепторы называют холинэргическими, чувствительные к адреналину - адренергическими. По чувствительности к мускарину и никотину холинергические рецепторы подразделяются на мускариночувствительные (м-холинорецепторы) и никотиночувствительные (н-холинорецепторы). Н-холинорецепторы неоднородны. Установлено, что их отличие заключается в чувствительности к различным веществам. Выделяют н-холинорецепторы, находящиеся в ганглиях автономной нервной системы, и н-холинорецепторы поперечнополосатой мускулатуры. Известны различные подтипы адренергических рецепторов, обозначаемые греческими буквами α 1 ,α 2 , β 1, β 2 .

    Выделяют также H 1 - и Н 2 -гистаминовые, допаминовые, серотониновые, опиоидные и другие рецепторы.

    Влияние на активность ферментов. Некоторые лекарственные средства повышают или угнетают активность специфических ферментов. Например, физостигмин и неостигмин снижают активность холинэстеразы, разрушающей ацетилхолин, и дают эффекты, характерные для возбуждения парасимпатической нервной системы. Ингибиторы моноаминоксидазы (ипразид, ниаламид), препятствующие разрушению адреналина, усиливают активность симпатической нервной системы. Фенобарбитал и зиксорин, повышая активность глюкуронилтрансферазы печени, снижают уровень билирубина в крови.

    Физико-химическое действие на мембраны клеток . Деятельность клеток нервной и мышечной систем зависит от потоков ионов, определяющих трансмембранный электрический потенциал. Некоторые лекарственные средства изменяют транспорт ионов.

    Так действуют антиаритмические, противосудорожные препараты, средства для общего наркоза.

    Прямое химическое взаимодействие. Лекарственные средства могут непосредственно взаимодействовать с небольшими молекулами или ионами внутри клеток. Например, этилендиаминтетрауксусная кислота (ЭДТА) прочно связывает ионы свинца. Принцип прямого химического взаимодействия лежит в основе применения многих антидотов при отравлениях химическими веществами. Другим примером может служить нейтрализация соляной кислоты антацидными средствами.

    Связь "доза-эффект"

    Является важным фармакодинамическим показателем. Обычно этот показатель представляет собой не простое арифметическое отношение и может графически выражаться по-разному: линейно, изогнутой вверх либо вниз кривой, сигмоидальной линией.

    Каждое лекарство обладает рядом желательных и нежелательных свойств. Чаще всего при увеличении дозы лекарства до определенного предела желаемый эффект возрастает, но при этом могут возникать нежелательные эффекты. Лекарство может иметь не одну, а несколько кривых отношения "доза-эффект" для его различных сторон действия. Отношение доз лекарства, при которых вызывается нежелательный или желаемый эффект, используют для характеристики границы безопасности или терапевтического индекса препарата. Терапевтический индекс препарата можно рассчитывать по соотношению его концентраций в плазме крови, вызывающих нежелательные (побочные) эффекты, и концентраций, оказывающих терапевтическое действие, что более точно может характеризовать соотношение эффективности и риска применения данного лекарства.

    URL

    Глава 6

    Клиническая фармакология и фармакотерапия

    Белоусов Ю.Б., Моисеев В.С., Лепахин В.К.

    URL
    Книга "Клиническая фармакология и фармакотерапия" - Глава 6 ОСНОВНЫЕ ВОПРОСЫ ФАРМАКОКИНЕТИКИ - 6.1 ОПРЕДЕЛЕНИЕ ФАРМАКОКИНЕТИКИ И ЕЕ ОСНОВНЫЕ ПАРАМЕТРЫ

    Глава 6

    ОСНОВНЫЕ ВОПРОСЫ ФАРМАКОКИНЕТИКИ

    ОПРЕДЕЛЕНИЕ ФАРМАКОКИНЕТИКИ И ЕЕ ОСНОВНЫЕ ПАРАМЕТРЫ

    Фармакокинетика - раздел клинической фармакологии, предметом которого является изучение процессов всасывания, распределения, связывания с белками, биотрансформации и выведения лекарственных веществ. Фармакокинетика является относительно новой наукой. Ее развитие стало возможным благодаря разработке и внедрению в практику высокочувствительных методов определения содержания лекарственных веществ в биологических средах - газожидкостной хроматографии, радиоиммунных, ферментно-химических и других методов, а также благодаря разработке методов математического моделирования фармакокинетических процессов. Фармакокинетические исследования проводятся специалистами в области аналитической химии, провизорами, фармацевтами, биологами, но результаты могут быть очень полезны для врача. На основании данных о фармакокинетике того или иного препарата определяют дозы, оптимальный путь введения, режим применения препарата и продолжительность лечения. Регулярный контроль содержания лекарственных средств в биологических жидкостях позволяет своевременно корригировать лечение.

    Знание основных принципов фармакокинетики, умение ими пользоваться на практике приобретают особое значение в случаях, когда неясны причины неэффективности лечения или плохой переносимости больным лекарственного препарата, при лечении больных, страдающих заболеваниями печени и почек, при одновременном применении нескольких лекарственных средств и др.

    Фармакокинетические исследования необходимы при разработке новых препаратов, их лекарственных форм, а также при экспериментальных и клинических испытаниях лекарственных средств.

    Процессы, происходящие с лекарственными препаратами в организме, могут быть описаны с помощью ряда параметров.

    Константы скорости элиминации (Кel), абсорбции (Ка) и экскреции (Кex) характеризуют соответственно скорость исчезновения препарата из организма путем биотрансформации и выведения, скорость поступления его из места введения в кровь и скорость выведения с мочой, калом, слюной и др.

    Период полувыведения (Т1/2) - время, необходимое для уменьшения вдвое концентрации препарата в крови, зависит от константы скорости элиминации (Т1/2= 0,693/Кel). Период полуабсорбции (Т1/2,a) - время, необходимое для всасывания половины дозы препарата из места введения в кровь, пропорционален константе скорости абсорбции (Т1/2,a=0,693/Ка).

    Распределение препарата в организме характеризуют период полураспределения, кажущаяся начальная и стационарная (равновесная) концентрации, объем распределения. Период полураспределения (Т1/2,a) - время, необходимое для достижения концентрации препарата в крови, равной 50% от равновесной, т.е. при наличии равновесия между кровью и тканями. Кажущаяся начальная концентрация (С0) - концентрация препарата, которая была бы достигнута в плазме крови при внутривенном его введении и мгновенном распределении по органам и тканям. Равновесная концентрация (Сss) - концентрация препарата, которая установится в плазме (сыворотке) крови при поступлении препарата в организм с постоянной скоростью. При прерывистом введении (приеме) препарата через одинаковые промежутки времени в одинаковых дозах выделяют максимальную (Сssmax) и минимальную (Сssmin) равновесные концентрации. Объем распределения препарата (Vd) характеризует степень его захвата тканями из плазмы (сыворотки) крови. Vd (Vd= D/C0) - условный объем жидкости, в котором нужно растворить всю попавшую в организм дозу препарата (D), чтобы получилась концентрация, равная кажущейся начальной концентрации в сыворотке крови (С0).

    Общий клиренс препарата (Clt) характеризует скорость “очищения” организма от лекарственного препарата. Выделяют почечный (Clr) и внепочечный (Cler) клиренсы, которые отражают выведение лекарственного вещества соответственно с мочой и другими путями (прежде всего с желчью). Общий клиренс является суммой почечного и внепочечного клиренса.

    Площадь под кривой “концентрация - время” (AUC) - площадь фигуры, ограниченной фармакокинетической кривой и осями координат (AUC = C0/Kel). Величина (AUC) связана с другими фармакокинетическими параметрами - объемом распределения, общим клиренсом. При линейности кинетики препарата в организме величина AUC пропорциональна общему количеству (дозе) препарата, попавшего в системный кровоток. Часто определяют площадь под частью кривой (от нуля до некоторого времени t); этот параметр обозначают AUCt, например, площадь под кривой от 0 до 8 ч - AUC8.

    Абсолютная биодоступность (f) - часть дозы препарата (в %), которая достигла системного кровотока после внесосудистого введения, равна отношению AUC после введения исследуемым методом (внутрь, в мышцу и др.) к AUC после внутривенного введения. Относительную биодоступность определяют для сравнения биодоступности двух лекарственных форм для внесосудистого введения. Она равна отношению (AUC’/AUC)(D/D’) после введения двух сравниваемых форм. Общая биодоступность - часть принятой внутрь дозы препарата, которая достигла системного кровотока в неизмененном виде и в виде метаболитов, образовавшихся в процессе всасывания в результате так называемого пресистемного метаболизма, или “эффекта первичного прохождения”.

    Фармакология как наука (в частности это каса­ется клинической фармакологии) включает в себя два важнейших раздела: фармакодинамику и фарма-кокннетику. Если фармакодинамика занимается изу­чением биологического и терапевтического действия различных лекарственных средств на организм, то основной задачей фармакокинетики является изучение абсорбции, распределения, метаболизма и экскреции (выведения) медицинских препаратов. Таким образом, можно сказать, что фармакодинамика изучает отно­шение «лекарство - человек», а Фармакокинетика, [нэ] -и; ж. Раздел фармакологии, изучающий всасывание, распределение, превращения и выведение из организма лекарственных веществ.

    " data-tipmaxwidth="500" data-tiptheme="tipthemeflatdarklight" data-tipdelayclose="1000" data-tipeventout="mouseout" data-tipmouseleave="false" class="jqeasytooltip jqeasytooltip14" id="jqeasytooltip14" title="Фармакокинетика">фармакокинетика - «человек - лекарство». Итак, фармакокинетика - это один из главных разделов клинической фармаколо­гии, предметом изучения которого являются процессы распределения, всасывания, связывания с орга­низма, биотрансформации и выведения лекарственных препаратов.

    Для описания процессов, которые происходят с фар­макологическими препаратами, после того, как они введены в организм, принят целый ряд специальных параметров:

    1) константа (постоянная) скорости абсорбции (К а) - это показатель, который характеризует скорость поступления лекарственного вещества из места введения в кровь ;

    2) константа скорости элиминации (K et) - отражает скорость исчезновения конкретного препарата из организма посредством его биотрансформации и экскреции;

    3) константа скорости экскреции (К ех) - это пока­затель, который определяет скорость выведения фармакологического препарата с выделениями (мочой, калом, слюной), а также другими путями;

    4) период полувыведения (7/2) - это то время, кото­рое необходимо для снижения уменьшения концен­трации вещества в крови пациента в 2 раза; данный показатель напрямую зависит от упомянутой кон­станты скорости элиминации (Ti/2 = 0,693/K e i);

    5) период полуабсорбции (Ti/ 2 a) - это время, которое требуется для всасывания 1 /2 дозы определенного фармакологического препарата из места введе­ния в кровь; данный показатель пропорционален константе скорости абсорбции (П/2а = 0,6Q3/K a);

    6) кажущаяся начальная концентрация (Со) - это концентрация вещества, которая могла быть до­стигнута "(в плазме крови) при внутривенном пути введения и моментальном распределении препарата по различным тканям и органам;

    7) равновесная концентрация (C S 3) - данный показатель отражает концентрацию вещества, которая устанавливается в плазме крови при условии его поступления в организм с определенной скоростью. Если осуществляется прерывистое введение (или же прием) фармакологического препарата через одинаковые отрезки времени и в одинаковых
    дозах, то принято выделять максимальную равновесную концентрацию (C asm ax) и минимальную равновесную концентрацию (C ssmin);

    8) объем распределения препарата (Vd) определяет степень захвата определенного вещества различ­ными тканями организма из плазмы крови. V d (Yd = D/Co) - это некий условный объем жид­кости, который необходим для растворения всей поступившей в организм дозы фармакологического препарата (D) для достижения концентрации, рав­ной (Со), т. е. кажущейся начальной концентрации в сыворотке крови;

    9) общий клиренс препарата (Ck) - это показатель, который характеризует скорость полного освобож­дения организма от определенного медицинского препарата. Принято рассматривать почечный кли­ренс (С1 Г) и внепочечный клиренс (С1 ег). Эти два показателя отражают выведение фармако­логического препарата, соответственно, с мочой и прочими путями (главным образом, с желчью). Таким образом, общий клиренс представляет собой сумму почечного и внепочечного клиренсов;

    10) площадь под кривой «концентрация - время» (AUC) - это площадь условной фигуры, которая при построении ограничена фармакокинетической кривой и осями координат (AUC = Со/К е {). Ве­личина (AUC) непосредственно связана с такими фармакокинетическими параметрами, как объем распределения и общий клиренс препарата. При линейности кинетики определенного вещества в ор­ганизме данная величина (AUС) пропорциональна общему количеству (дозе) препарата, которое поступило в кровеносную систему. Нередко опре­деляют площадь фигуры под отдельной частью кривой (от нулевой отметки до определенного времени t); данный параметр принято обозначать как AUCu так, к примеру, AUC 4 - площадь под кривой от 0 до 4 ч;

    11) абсолютная биодоступность (/) - под этим терми­ном подразумевается некоторая часть от общего объема (дозы) вещества (в %), которая попадает в системный кровоток при внесосудистом введении; данная величина равна отношению AUC после введения определенным методом к AUC после введения в вену;

    12) относительная биодоступность - это параметр, который необходим для сравнения биодоступности двух различных препаратов (лекарственных форм), предназначенных для внесосудистого введения. Относительная биодоступность равна отношению (AUC/AUC) j (£>/£>");

    13) общая биодоступность - это часть принятой внутрь дозы фармакологического препарата, кото­рая попала в системный кровоток в неизмененном виде, а также в виде различных метаболитов. В данном случае, имеются в виду