Как найти сумму арифметической прогрессии. Арифметическая прогрессия

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

Тип урока: изучение нового материала.

Цели урока:

  • расширение и углубление представлений учащихся о задачах, решаемых с использованием арифметической прогрессии; организация поисковой деятельности учащихся при выводе формулы суммы первых n членов арифметической прогрессии;
  • развитие умений самостоятельно приобретать новые знания, использовать для достижения поставленной задачи уже полученные знания;
  • выработка желания и потребности обобщать полученные факты, развитие самостоятельности.

Задачи:

  • обобщить и систематизировать имеющиеся знания по теме “Арифметическая прогрессия”;
  • вывести формулы для вычисления суммы n первых членов арифметической прогрессии;
  • научить применять полученные формулы при решении различных задач;
  • обратить внимание учащихся на порядок действий при нахождении значения числового выражения.

Оборудование:

  • карточки с заданиями для работы в группах и парах;
  • оценочный лист;
  • презентация “Арифметическая прогрессия”.

I. Актуализация опорных знаний.

1. Самостоятельная работа в парах.

1-й вариант:

Дайте определение арифметической прогрессии. Запишите рекуррентную формулу, с помощью которой задается арифметическая прогрессия. Приветите пример арифметической прогрессии и укажите её разность.

2-й вариант:

Запишите формулу n-го члена арифметической прогрессии. Найдите 100-й член арифметической прогрессии {a n }: 2, 5, 8 …
В это время два ученика на обратной стороне доски готовят ответы на эти же вопросы.
Учащиеся оценивают работу партнера, сверяя с доской. (Листочки с ответами сдают).

2. Игровой момент.

Задание 1.

Учитель. Я задумала некоторую арифметическую прогрессию. Задайте мне только два вопроса, чтобы после ответов вы быстро смогли бы назвать 7-й член этой прогрессии. (1, 3, 5, 7, 9, 11, 13, 15…)

Вопросы учащихся.

  1. Чему равен шестой член прогрессии и чему равна разность?
  2. Чему равен восьмой член прогрессии и чему равна разность?

Если вопросов больше не последует, то учитель может стимулировать их – “запрет” на d (разность), то есть не разрешается спрашивать чему равна разность. Можно задать вопросы: чему равен 6-й член прогрессии и чему равен 8-й член прогрессии?

Задание 2.

На доске записано 20 чисел: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Учитель стоит спиной к доске. Ученики называют номер числа, а учитель мгновенно называет само число. Объясните, как мне это удается?

Учитель помнит формулу n-го члена a n = 3n – 2 и, подставляя задаваемые значения n, находит соответствующие значения a n .

II. Постановка учебной задачи.

Предлагаю решить старинную задачу, относящуюся ко II-му тысячелетию до нашей эры, найденную в египетских папирусах.

Задача: “Пусть тебе сказано: раздели 10 мер ячменя между 10 человеками, разность между каждым человеком и его соседом равняется 1/8 меры”.

  • Как эта задача связана с темой арифметическая прогрессия? (Каждый следующий получает на 1/8 меры больше, значит разность d=1/8, 10 человек, значит n=10.)
  • А что, по-вашему мнению, означает число 10 мер? (Сумма всех членов прогрессии.)
  • Что ещё необходимо знать, чтобы было легко и просто разделить ячмень согласно условию задачи? (Первый член прогрессии.)

Задача урока – получение зависимости суммы членов прогрессии от их числа, первого члена и разности, и проверка того, верно ли в древности решали поставленную задачу.

Прежде чем сделать вывод формулы, посмотрим, как решали задачу древние египтяне.

А решали её следующим образом:

1) 10 мер: 10 = 1 мера – средняя доля;
2) 1 мера ∙ = 2 меры – удвоенная средняя доля.
Удвоенная средняя доля – это сумма долей 5-го и 6-го человек.
3) 2 меры – 1/8 меры = 1 7/8 меры – удвоенная доля пятого человека.
4) 1 7/8: 2 = 5/16 – доля пятого; и так далее можно найти долю каждого предыдущего и последующего человека.

Получим последовательность:

III. Решение поставленной задачи.

1. Работа в группах

I-я группа: Найти сумму 20 последовательных натуральных чисел: S 20 =(20+1)∙10 =210.

В общем виде

II-я группа: Найти сумму натуральных чисел от 1 до 100 (Легенда о маленьком Гауссе).

S 100 = (1+100)∙50 = 5050

Вывод:

III-я группа: Найти сумму натуральных чисел от 1 до 21.

Решение: 1+21=2+20=3+19=4+18…

Вывод:

IV-я группа: Найти сумму натуральных чисел от 1 до 101.

Вывод:

Этот метод решения рассмотренных задач называется “Метод Гаусса”.

2. Каждая группа представляет решение задачи на доске.

3. Обобщение предложенных решений для произвольной арифметической прогрессии:

a 1 , a 2 , a 3 ,…, a n-2 , a n-1 , a n .
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n .

Найдем эту сумму рассуждая аналогично:

4. Решили мы поставленную задачу? (Да.)

IV. Первичное осмысление и применение полученных формул при решении задач.

1. Проверка решения старинной задачи по формуле.

2. Применение формулы при решении различных задач.

3. Упражнения на формирование умения применения формулы при решении задач.

А) №613

Дано: (а n) – арифметическая прогрессия;

(а n): 1, 2, 3, …, 1500

Найти: S 1500

Решение: , а 1 = 1, а 1500 = 1500,

Б) Дано: (а n) – арифметическая прогрессия;
(а n): 1, 2, 3, …
S n = 210

Найти: n
Решение:

V. Самостоятельная работа с взаимопроверкой.

Денис поступил на работу курьером. В первый месяц его зарплата составила 200 рублей, в каждый последующий она повышалась на 30 рублей. Сколько всего он заработал за год?

Дано: (а n) – арифметическая прогрессия;
а 1 = 200, d=30, n=12
Найти: S 12
Решение:

Ответ: 4380 рублей получил Денис за год.

VI. Инструктаж по домашнему заданию.

  1. п. 4.3 – выучить вывод формулы .
  2. №№ 585, 623 .
  3. Составить задачу, которая решалась бы с использованием формулы суммы n первых членов арифметической прогрессии.

VII. Подведение итогов урока.

1. Оценочный лист

2. Продолжи предложения

  • Сегодня на уроке я узнал …
  • Изученные формулы …
  • Я считаю что …

3. Сможешь ли ты найти сумму чисел от 1 до 500? Каким методом будешь решать эту задачу?

Список литературы.

1. Алгебра, 9-й класс. Учебник для общеобразовательных учреждений. Под ред. Г.В. Дорофеева. М.: “Просвещение”, 2009.

Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.

Так, в одном из папирусов Древнего Египта, имеющем математическое содержание, - папирусе Райнда (XIX век до нашей эры) - содержится такая задача: раздели десять мер хлеба на десять человек, при условии если разность между каждым из них составляет одну восьмую меры».

И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов».

Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).

Последовательность может быть бесконечной или конечной.

А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.

Если d<0, то мы имеем убывающую прогрессию. Если d>0, то такая прогрессия считается возрастающей.

Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.

Задается любая арифметическая прогрессия следующей формулой:

an =kn+b, при этом b и k - некоторые числа.

Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:

  1. Каждый член прогрессии - среднее арифметическое предыдущего члена и последующего.
  2. Обратное: если, начиная со 2-ого, каждый член - среднее арифметическое предыдущего члена и последующего, т.е. если выполняется условие, то данная последовательность - арифметическая прогрессия. Это равенство одновременно является и признаком прогрессии, поэтому его, как правило, называют характеристическим свойством прогрессии.
    Точно так же верна теорема, которая отражает это свойство: последовательность - арифметическая прогрессия только в том случае, если это равенство верно для любого из членов последовательности, начиная со 2-ого.

Характеристическое свойство для четырёх любых чисел арифметической прогрессии может быть выражено формулой an + am = ak + al, если n + m = k + l (m, n, k - числа прогрессии).

В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:

К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177

Формула an = ak + d(n - k) позволяет определить n-й член арифметической прогрессии через любой ее k-тый член при условии, если он известен.

Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:

Sn = (a1+an) n/2.

Если известны и 1-ый член, то для вычисления удобна другая формула:

Sn = ((2a1+d(n-1))/2)*n.

Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:

Выбор формул для расчетов зависит от условий задач и исходных данных.

Натуральный ряд любых чисел, таких как 1,2,3,...,n,...- простейший пример арифметической прогрессии.

Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Арифметическая прогрессия - это ряд чисел, в котором каждое число больше (или меньше) предыдущего на одну и ту же величину.

Эта тема частенько представляется сложной и непонятной. Индексы у буковок, n-й член прогрессии, разность прогрессии - всё это как-то смущает, да... Разберёмся со смыслом арифметической прогрессии и всё сразу наладится.)

Понятие арифметической прогрессии.

Арифметическая прогрессия - понятие очень простое и чёткое. Сомневаетесь? Зря.) Смотрите сами.

Я напишу незаконченный ряд чисел:

1, 2, 3, 4, 5, ...

Сможете продлить этот ряд? Какие числа пойдут дальше, за пятёркой? Каждый... э-э-э..., короче, каждый сообразит, что дальше пойдут числа 6, 7, 8, 9 и т.д.

Усложним задачу. Даю незаконченный ряд чисел:

2, 5, 8, 11, 14, ...

Сможете уловить закономерность, продлить ряд, и назвать седьмое число ряда?

Если сообразили, что это число 20 - я вас поздравляю! Вы не только почувствовали ключевые моменты арифметической прогрессии, но и успешно употребили их в дело! Если не сообразили - читаем дальше.

А теперь переведём ключевые моменты из ощущений в математику.)

Первый ключевой момент.

Арифметическая прогрессия имеет дело с рядами чисел. Это и смущает поначалу. Мы привыкли уравнения решать, графики строить и всё такое... А тут продлить ряд, найти число ряда...

Ничего страшного. Просто прогрессии - это первое знакомство с новым разделом математики. Раздел называется "Ряды" и работает именно с рядами чисел и выражений. Привыкайте.)

Второй ключевой момент.

В арифметической прогрессии любое число отличается от предыдущего на одну и ту же величину.

В первом примере эта разница - единичка. Какое число ни возьми, оно больше предыдущего на единичку. Во втором - тройка. Любое число больше предыдущего на тройку. Собственно, именно этот момент и даёт нам возможность уловить закономерность и рассчитать последующие числа.

Третий ключевой момент.

Этот момент не бросается в глаза, да... Но очень, очень важен. Вот он: каждое число прогрессии стоит на своём месте. Есть первое число, есть седьмое, есть сорок пятое, и т.д. Если их перепутать как попало, закономерность исчезнет. Исчезнет и арифметическая прогрессия. Останется просто ряд чисел.

Вот и вся суть.

Разумеется, в новой теме появляются новые термины и обозначения. Их надо знать. Иначе и задание-то не поймёшь. Например, придётся решать, что-нибудь, типа:

Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Внушает?) Буковки, индексы какие-то... А задание, между прочим - проще некуда. Просто нужно понять смысл терминов и обозначений. Сейчас мы это дело освоим и вернёмся к заданию.

Термины и обозначения.

Арифметическая прогрессия - это ряд чисел, в котором каждое число отличается от предыдущего на одну и ту же величину.

Эта величина называется . Разберёмся с этим понятием поподробнее.

Разность арифметической прогрессии.

Разность арифметической прогрессии - это величина, на которую любое число прогрессии больше предыдущего.

Один важный момент. Прошу обратить внимание на слово "больше". Математически это означает, что каждое число прогрессии получается прибавлением разности арифметической прогрессии к предыдущему числу.

Для расчёта, скажем, второго числа ряда, надо к первому числу прибавить эту самую разность арифметической прогрессии. Для расчёта пятого - разность надо прибавить к четвёртому, ну и т.п.

Разность арифметической прогрессии может быть положительной, тогда каждое число ряда получится реально больше предыдущего. Такая прогрессия называется возрастающей. Например:

8; 13; 18; 23; 28; .....

Здесь каждое число получается прибавлением положительного числа, +5 к предыдущему.

Разность может быть и отрицательной, тогда каждое число ряда получится меньше предыдущего. Такая прогрессия называется (вы не поверите!) убывающей.

Например:

8; 3; -2; -7; -12; .....

Здесь каждое число получается тоже прибавлением к предыдущему, но уже отрицательного числа, -5.

Кстати, при работе с прогрессией очень полезно бывает сразу определить её характер - возрастающая она, или убывающая. Это здорово помогает сориентироваться в решении, засечь свои ошибки и исправить их, пока не поздно.

Разность арифметической прогрессии обозначается, как правило, буквой d.

Как найти d ? Очень просто. Надо от любого числа ряда отнять предыдущее число. Вычесть. Кстати, результат вычитания называется "разность".)

Определим, например, d для возрастающей арифметической прогрессии:

2, 5, 8, 11, 14, ...

Берём любое число ряда, какое хотим, например, 11. Отнимаем от него предыдущее число, т.е. 8:

Это правильный ответ. Для этой арифметической прогрессии разность равна трём.

Брать можно именно любое число прогрессии, т.к. для конкретной прогрессии d - всегда одно и то же. Хоть где-нибудь в начале ряда, хоть в середине, хоть где угодно. Брать нельзя только самое первое число. Просто потому, что у самого первого числа нет предыдущего. )

Кстати, зная, что d = 3 , найти седьмое число этой прогрессии очень просто. Прибавим 3 к пятому числу - получим шестое, это будет 17. Прибавим к шестому числу тройку, получим седьмое число - двадцать.

Определим d для убывающей арифметической прогрессии:

8; 3; -2; -7; -12; .....

Напоминаю, что, независимо от знаков, для определения d надо от любого числа отнять предыдущее. Выбираем любое число прогрессии, например -7. Предыдущее у него - число -2. Тогда:

d = -7 - (-2) = -7 + 2 = -5

Разность арифметической прогрессии может быть любым числом: целым, дробным, иррациональным, всяким.

Другие термины и обозначения.

Каждое число ряда называется членом арифметической прогрессии.

Каждый член прогрессии имет свой номер. Номера идут строго по порядочку, безо всяких фокусов. Первый, второй, третий, четвёртый и т.д. Например, в прогрессии 2, 5, 8, 11, 14, ... двойка - это первый член, пятёрка - второй, одиннадцать - четвёртый, ну, вы поняли...) Прошу чётко осознать - сами числа могут быть совершенно любые, целые, дробные, отрицательные, какие попало, но нумерация чисел - строго по порядку!

Как записать прогрессию в общем виде? Не вопрос! Каждое число ряда записывается в виде буквы. Для обозначения арифметической прогрессии используется, как правило, буква a . Номер члена указывается индексом внизу справа. Члены пишем через запятую (или точку с запятой), вот так:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - это первое число, a 3 - третье, и т.п. Ничего хитрого. Записать этот ряд кратко можно вот так: (a n ).

Прогрессии бывают конечные и бесконечные.

Конечная прогрессия имеет ограниченное количество членов. Пять, тридцать восемь, сколько угодно. Но - конечное число.

Бесконечная прогрессия - имеет бесконечное количество членов, как можно догадаться.)

Записать конечную прогрессию через ряд можно вот так, все члены и точка в конце:

a 1 , a 2 , a 3 , a 4 , a 5 .

Или так, если членов много:

a 1 , a 2 , ... a 14 , a 15 .

В краткой записи придётся дополнительно указывать количество членов. Например (для двадцати членов), вот так:

(a n), n = 20

Бесконечную прогрессию можно узнать по многоточию в конце ряда, как в примерах этого урока.

Теперь уже можно порешать задания. Задания несложные, чисто для понимания смысла арифметической прогрессии.

Примеры заданий по арифметической прогрессии.

Разберём подробненько задание, что приведено выше:

1. Выпишите первые шесть членов арифметической прогрессии (a n), если a 2 = 5, d = -2,5.

Переводим задание на понятный язык. Дана бесконечная арифметическая прогрессия. Известен второе число этой прогрессии: a 2 = 5. Известна разность прогрессии: d = -2,5. Нужно найти первый, третий, четвёртый, пятый и шестой члены этой прогрессии.

Для наглядности запишу ряд по условию задачки. Первые шесть членов, где второй член - пятёрка:

a 1 , 5 , a 3 , a 4 , a 5 , a 6 ,....

a 3 = a 2 + d

Подставляем в выражение a 2 = 5 и d = -2,5 . Не забываем про минус!

a 3 =5+(-2,5)=5 - 2,5 = 2,5

Третий член получился меньше второго. Всё логично. Если число больше предыдущего на отрицательную величину, значит само число получится меньше предыдущего. Прогрессия - убывающая. Ладно, учтём.) Считаем четвёртый член нашего ряда:

a 4 = a 3 + d

a 4 =2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5 =0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6 =-2,5+(-2,5)=-2,5 - 2,5 = -5

Так, члены с третьего по шестой вычислили. Получился такой ряд:

a 1 , 5 , 2,5 , 0 , -2,5 , -5 , ....

Остаётся найти первый член a 1 по известному второму. Это шаг в другую сторону, влево.) Значит, разность арифметической прогрессии d надо не прибавить к a 2 , а отнять:

a 1 = a 2 - d

a 1 =5-(-2,5)=5 + 2,5=7,5

Вот и все дела. Ответ задания:

7,5, 5, 2,5, 0, -2,5, -5, ...

Попутно замечу, что это задание мы решали рекуррентным способом. Это страшное слово означает, всего лишь, поиск члена прогрессии по предыдущему (соседнему) числу. Другие способы работы с прогрессией мы рассмотрим далее.

Из этого несложного задания можно сделать один важный вывод.

Запоминаем:

Если нам известен хотя бы один член и разность арифметической прогрессии, мы можем найти любой член этой прогрессии.

Запомнили? Этот несложный вывод позволяет решать большинство задач школьного курса по этой теме. Все задачи крутятся вокруг трёх главных параметров: член арифметической прогрессии, разность прогрессии, номер члена прогрессии. Всё.

Разумеется, вся предыдущая алгебра не отменяется.) К прогрессии прицепляются и неравенства, и уравнения, и прочие вещи. Но по самой прогрессии - всё крутится вокруг трёх параметров.

Для примера рассмотрим некоторые популярные задания по этой теме.

2. Запишите конечную арифметическую прогрессию в виде ряда, если n=5, d = 0,4, и a 1 = 3,6.

Здесь всё просто. Всё уже дано. Нужно вспомнить, как считаются члены арифметической прогрессии, посчитать, да и записать. Желательно не пропустить слова в условии задания: "конечную" и "n=5 ". Чтобы не считать до полного посинения.) В этой прогрессии всего 5 (пять) членов:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

a 5 = a 4 + d = 4,8 + 0,4 = 5,2

Остаётся записать ответ:

3,6; 4; 4,4; 4,8; 5,2.

Ещё задание:

3. Определите, будет ли число 7 членом арифметической прогрессии (a n), если a 1 = 4,1; d = 1,2.

Хм... Кто ж его знает? Как определить-то?

Как-как... Да записать прогрессию в виде ряда и посмотреть, будет там семёрка, или нет! Считаем:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Сейчас чётко видно, что семёрку мы просто проскочили между 6,5 и 7,7! Не попала семёрка в наш ряд чисел, и, значит, семёрка не будет членом заданной прогрессии.

Ответ: нет.

А вот задачка на основе реального варианта ГИА:

4. Выписано несколько последовательных членов арифметической прогрессии:

...; 15; х; 9; 6; ...

Здесь записан ряд без конца и начала. Нет ни номеров членов, ни разности d . Ничего страшного. Для решения задания достаточно понимать смысл арифметической прогрессии. Смотрим и соображаем, что можно узнать из этого ряда? Какие параметры из трёх главных?

Номера членов? Нет тут ни единого номера.

Зато есть три числа и - внимание! - слово "последовательных" в условии. Это значит, что числа идут строго по порядку, без пропусков. А есть ли в этом ряду два соседних известных числа? Да, есть! Это 9 и 6. Стало быть, мы можем вычислить разность арифметической прогрессии! От шестёрки отнимаем предыдущее число, т.е. девятку:

Остались сущие пустяки. Какое число будет предыдущим для икса? Пятнадцать. Значит, икс можно легко найти простым сложением. К 15 прибавить разность арифметической прогрессии:

Вот и всё. Ответ: х=12

Следующие задачки решаем самостоятельно. Замечание: эти задачки - не на формулы. Чисто на понимание смысла арифметической прогрессии.) Просто записываем ряд с числами-буквами, смотрим и соображаем.

5. Найдите первый положительный член арифметической прогрессии, если a 5 = -3; d = 1,1.

6. Известно, что число 5,5 является членом арифметической прогрессии (a n), где a 1 = 1,6; d = 1,3. Определите номер n этого члена.

7. Известно, что в арифметической прогрессии a 2 = 4; a 5 = 15,1. Найдите a 3 .

8. Выписано несколько последовательных членов арифметической прогрессии:

...; 15,6; х; 3,4; ...

Найдите член прогрессии, обозначенный буквой х.

9. Поезд начал движение от станции, равномерно увеличивая скорость на 30 метров в минуту. Какова будет скорость поезда через пять минут? Ответ дайте в км/час.

10. Известно, что в арифметической прогрессии a 2 = 5; a 6 = -5. Найдите a 1 .

Ответы (в беспорядке): 7,7; 7,5; 9,5; 9; 0,3; 4.

Всё получилось? Замечательно! Можно осваивать арифметическую прогрессию на более высоком уровне, в следующих уроках.

Не всё получилось? Не беда. В Особом разделе 555 все эти задачки разобраны по косточкам.) И, конечно, описан простой практический приём, который сразу высвечивает решение подобных заданий чётко, ясно, как на ладони!

Кстати, в задачке про поезд есть две проблемки, на которых часто спотыкается народ. Одна - чисто по прогрессии, а вторая - общая для любых задач по математике, да и физике тоже. Это перевод размерностей из одной в другую. В показано, как надо эти проблемы решать.

В этом уроке мы рассмотрели элементарный смысл арифметической прогрессии и её основные параметры. Этого достаточно для решения практически всех задач на эту тему. Прибавляй d к числам, пиши ряд, всё и решится.

Решение "на пальцах" хорошо подходит для очень коротких кусочков ряда, как в примерах этого урока. Если ряд подлиннее, вычисления усложняются. Например, если в задачке 9 в вопросе заменить "пять минут" на "тридцать пять минут", задачка станет существенно злее.)

А ещё бывают задания простые по сути, но несусветные по вычислениям, например:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

И что, будем много-много раз прибавлять по 1/6?! Это же убиться можно!?

Можно.) Если не знать простую формулу, по которой решать подобные задания можно за минуту. Эта формула будет в следующем уроке. И задачка эта там решена. За минуту.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Калькулятор онлайн.
Решение арифметической прогрессии.
Дано: a n , d, n
Найти: a 1

Эта математическая программа находит \(a_1\) арифметической прогрессии, исходя из заданных пользователем чисел \(a_n, d \) и \(n \).
Числа \(a_n\) и \(d \) можно задать не только целые, но и дробные. Причём, дробное число можно ввести в виде десятичной дроби (\(2,5 \)) и в виде обыкновенной дроби (\(-5\frac{2}{7} \)).

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа \(a_n\) и \(d \) можно задать не только целые, но и дробные.
Число \(n \) может быть только целым положительным.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод:
Результат: \(-\frac{2}{3} \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод:
Результат: \(-1\frac{2}{3} \)

Введите числа a n , d, n


Найти a 1

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Числовая последовательность

В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например, дома на каждой улице нумеруются. В библиотеке нумеруются читательские абонементы и затем располагаются в порядке присвоенных номеров в специальных картотеках.

В сберегательном банке по номеру лицевого счёта вкладчика можно легко найти этот счёт и посмотреть, какой вклад на нём лежит. Пусть на счёте № 1 лежит вклад а1 рублей, на счёте № 2 лежит вклад а2 рублей и т. д. Получается числовая последовательность
a 1 , a 2 , a 3 , ..., a N
где N - число всех счетов. Здесь каждому натуральному числу n от 1 до N поставлено в соответствие число a n .

В математике также изучаются бесконечные числовые последовательности:
a 1 , a 2 , a 3 , ..., a n , ... .
Число a 1 называют первым членом последовательности , число a 2 - вторым членом последовательности , число a 3 - третьим членом последовательности и т. д.
Число a n называют n-м (энным) членом последовательности , а натуральное число n - его номером .

Например, в последовательности квадратов натуральных чисел 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 , ... а 1 = 1 - первый член последовательности; а n = n 2 является n-м членом последовательности; a n+1 = (n + 1) 2 является (n + 1)-м (эн плюс первым) членом последовательности. Часто последовательность можно задать формулой её n-го члена. Например, формулой \(a_n=\frac{1}{n}, \; n \in \mathbb{N} \) задана последовательность \(1, \; \frac{1}{2} , \; \frac{1}{3} , \; \frac{1}{4} , \dots,\frac{1}{n} , \dots \)

Арифметическая прогрессия

Продолжительность года приблизительно равна 365 суткам. Более точное значение равно \(365\frac{1}{4} \) суток, поэтому каждые четыре года накапливается погрешность, равная одним суткам.

Для учёта этой погрешности к каждому четвёртому году добавляются сутки, и удлинённый год называют високосным.

Например, в третьем тысячелетии високосными годами являются годы 2004, 2008, 2012, 2016, ... .

В этой последовательности каждый её член, начиная со второго, равен предыдущему, сложенному с одним и тем же числом 4. Такие последовательности называют арифметическими прогрессиями .

Определение.
Числовая последовательность a 1 , a 2 , a 3 , ..., a n , ... называется арифметической прогрессией , если для всех натуральных n выполняется равенство
\(a_{n+1} = a_n+d, \)
где d - некоторое число.

Из этой формулы следует, что a n+1 - a n = d. Число d называют разностью арифметической прогрессии .

По определению арифметической прогрессии имеем:
\(a_{n+1}=a_n+d, \quad a_{n-1}=a_n-d, \)
откуда
\(a_n= \frac{a_{n-1} +a_{n+1}}{2} \), где \(n>1 \)

Таким образом, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Этим объясняется название «арифметическая» прогрессия.

Отметим, что если a 1 и d заданы, то остальные члены арифметической прогрессии можно вычислить по рекуррентной формуле a n+1 = a n + d. Таким способом нетрудно вычислить несколько первых членов прогрессии, однако, например, для a 100 уже потребуется много вычислений. Обычно для этого используется формула n-го члена. По определению арифметической прогрессии
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d \)
и т.д.
Вообще,
\(a_n=a_1+(n-1)d, \)
так как n-й член арифметической прогрессии получается из первого члена прибавлением (n-1) раз числа d.
Эту формулу называют формулой n-го члена арифметической прогрессии .

Сумма n первых членов арифметической прогрессии

Найдём сумму всех натуральных чисел от 1 до 100.
Запишем эту сумму двумя способами:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
Сложим почленно эти равенства:
2S = 101 + 101 + 101 + ... + 101 + 101.
В этой сумме 100 слагаемых
Следовательно, 2S = 101 * 100, откуда S = 101 * 50 = 5050.

Рассмотрим теперь произвольную арифметическую прогрессию
a 1 , a 2 , a 3 , ..., a n , ...
Пусть S n - сумма n первых членов этой прогрессии:
S n = a 1 , a 2 , a 3 , ..., a n
Тогда сумма n первых членов арифметической прогрессии равна
\(S_n = n \cdot \frac{a_1+a_n}{2} \)

Так как \(a_n=a_1+(n-1)d \), то заменив в этой формуле a n получим еще одну формулу для нахождения суммы n первых членов арифметической прогрессии :
\(S_n = n \cdot \frac{2a_1+(n-1)d}{2} \)

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач