Как решить логарифмическое уравнение. Логарифмическое уравнение: основные формулы и приемы


Примеры:

\(\log_{2}{⁡x} = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡{(x^2-3)}=\log_3⁡{(2x)}\)
\(\log_{x+1}{(x^2+3x-7)}=2\)
\(\lg^2⁡{(x+1)}+10=11 \lg⁡{(x+1)}\)

Как решать логарифмические уравнения:

При решении логарифмического уравнения нужно стремиться преобразовать его к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), после чего сделать переход к \(f(x)=g(x)\).

\(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) \(⇒\) \(f(x)=g(x)\).


Пример: \(\log_2⁡(x-2)=3\)

Решение:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Проверка: \(10>2\) - подходит по ОДЗ
Ответ: \(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Очень важно! Этот переход можно делать только если:

Вы написали для исходного уравнения, и в конце проверите, входят ли найденные в ОДЗ. Если это не сделать, могут появиться лишние корни, а значит – неверное решение.

Число (или выражение) в слева и справа одинаково;

Логарифмы слева и справа - «чистые», то есть не должно быть никаких , умножений, делений и т.д. – только одинокие логарифмы по обе стороны от знака равно.

Например:

Заметим, что уравнения 3 и 4 можно легко решить, применив нужные свойства логарифмов.

Пример . Решить уравнение \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Решение :

Напишем ОДЗ: \(x>0\).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Слева перед логарифмом стоит коэффициент, справа сумма логарифмов. Это нам мешает. Перенесем двойку в показатель степени \(x\) по свойству: \(n \log_b{⁡a}=\log_b⁡{a^n}\). Сумму логарифмов представим в виде одного логарифма по свойству: \(\log_a⁡b+\log_a⁡c=\log_a{⁡bc}\)

\(\log_8⁡{x^2}=\log_8⁡25\)

Мы привели уравнение к виду \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\) и записали ОДЗ, значит можно выполнить переход к виду \(f(x)=g(x)\).

Получилось . Решаем его и получаем корни.

\(x_1=5\) \(x_2=-5\)

Проверяем подходят ли корни под ОДЗ. Для этого в \(x>0\) вместо \(x\) подставляем \(5\) и \(-5\). Эту операцию можно выполнить устно.

\(5>0\), \(-5>0\)

Первое неравенство верное, второе – нет. Значит \(5\) – корень уравнения, а вот \(-5\) – нет. Записываем ответ.

Ответ : \(5\)


Пример : Решить уравнение \(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\)

Решение :

Напишем ОДЗ: \(x>0\).

\(\log^2_2⁡{x}-3 \log_2{⁡x}+2=0\) ОДЗ: \(x>0\)

Типичное уравнение, решаемое с помощью . Заменяем \(\log_2⁡x\) на \(t\).

\(t=\log_2⁡x\)

Получили обычное . Ищем его корни.

\(t_1=2\) \(t_2=1\)

Делаем обратную замену

\(\log_2{⁡x}=2\) \(\log_2{⁡x}=1\)

Преобразовываем правые части, представляя их как логарифмы: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) и \(1=\log_2⁡2\)

\(\log_2{⁡x}=\log_2⁡4\) \(\log_2{⁡x}=\log_2⁡2 \)

Теперь наши уравнения имеют вид \(\log_a⁡{f(x)}=\log_a⁡{g(x)}\), и мы можем выполнить переход к \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Проверяем соответствие корней ОДЗ. Для этого в неравенство \(x>0\) вместо \(x\) подставляем \(4\) и \(2\).

\(4>0\) \(2>0\)

Оба неравенства верны. Значит и \(4\) и \(2\) корни уравнения.

Ответ : \(4\); \(2\).

Логарифмические уравнения. Продолжаем рассматривать задачи из части В ЕГЭ по математике. Мы с вами уже рассмотрели решения некоторых уравнений в статьях « » , « » . В этой статье рассмотрим логарифмические уравнения. Сразу скажу, что никаких сложных преобразований при решении таких уравнений на ЕГЭ не будет. Они просты.

Достаточно знать и понимать основное логарифмическое тождество, знать свойства логарифма. Обратите внимание на то, то после решения ОБЯЗАТЕЛЬНО нужно сделать проверку — подставить полученное значение в исходное уравнение и вычислить, в итоге должно получиться верное равенство.

Определение :

Логарифмом числа a по основанию b называется показатель степени, в который нужно возвести b, чтобы получить a.


Например:

Log 3 9 = 2, так как 3 2 = 9

Свойства логарифмов:

Частные случаи логарифмов:

Решим задачи. В первом примере мы сделаем проверку. В последующих проверку сделайте самостоятельно.

Найдите корень уравнения: log 3 (4–x) = 4

Так как log b a = x b x = a, то

3 4 = 4 – x

x = 4 – 81

x = – 77

Проверка:

log 3 (4–(–77)) = 4

log 3 81 = 4

3 4 = 81 Верно.

Ответ: – 77

Решите самостоятельно:

Найдите корень уравнения: log 2 (4 – x) = 7

Найдите корень уравнения log 5 (4 + x) = 2

Используем основное логарифмическое тождество.

Так как log a b = x b x = a, то

5 2 = 4 + x

x =5 2 – 4

x = 21

Проверка:

log 5 (4 + 21) = 2

log 5 25 = 2

5 2 = 25 Верно.

Ответ: 21

Найдите корень уравнения log 3 (14 – x) = log 3 5.

Имеет место следующее свойство, смысл его таков: если в левой и правой частях уравнения имеем логарифмы с одинаковым основанием, то можем приравнять выражения, стоящие под знаками логарифмов.

14 – x = 5

x = 9

Сделайте проверку.

Ответ: 9

Решите самостоятельно:

Найдите корень уравнения log 5 (5 – x) = log 5 3.

Найдите корень уравнения: log 4 (x + 3) = log 4 (4x – 15).

Если log c a = log c b, то a = b

x + 3 = 4x – 15

3x = 18

x = 6

Сделайте проверку.

Ответ: 6

Найдите корень уравнения log 1/8 (13 – x) = – 2.

(1/8) –2 = 13 – x

8 2 = 13 – x

x = 13 – 64

x = – 51

Сделайте проверку.

Небольшое дополнение – здесь используется свойство

степени ().

Ответ: – 51

Решите самостоятельно:

Найдите корень уравнения: log 1/7 (7 – x) = – 2

Найдите корень уравнения log 2 (4 – x) = 2 log 2 5.

Преобразуем правую часть. воспользуемся свойством:

log a b m = m∙log a b

log 2 (4 – x) = log 2 5 2

Если log c a = log c b, то a = b

4 – x = 5 2

4 – x = 25

x = – 21

Сделайте проверку.

Ответ: – 21

Решите самостоятельно:

Найдите корень уравнения: log 5 (5 – x) = 2 log 5 3

Решите уравнение log 5 (x 2 + 4x) = log 5 (x 2 + 11)

Если log c a = log c b, то a = b

x 2 + 4x = x 2 + 11

4x = 11

x = 2,75

Сделайте проверку.

Ответ: 2,75

Решите самостоятельно:

Найдите корень уравнения log 5 (x 2 + x) = log 5 (x 2 + 10).

Решите уравнение log 2 (2 – x) = log 2 (2 – 3x) +1.

Необходимо с правой стороны уравнения получить выражение вида:

log 2 (......)

Представляем 1 как логарифм с основанием 2:

1 = log 2 2

log с (ab) = log с a + log с b

log 2 (2 – x) = log 2 (2 – 3x) + log 2 2

Получаем:

log 2 (2 – x) = log 2 2 (2 – 3x)

Если log c a = log c b, то a = b, значит

2 – x = 4 – 6x

5x = 2

x = 0,4

Сделайте проверку.

Ответ: 0,4

Решите самостоятельно: Далее необходимо решить квадратное уравнение. Кстати,

корни равны 6 и – 4.

Корень "– 4" не является решением, так как основание логарифма должно быть больше нуля, а при " 4" оно равно « 5». Решением является корень 6. Сделайте проверку.

Ответ: 6.

Решите самостоятельно:

Решите уравнение log x –5 49 = 2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Как вы убедились, никаких сложных преобразований с логарифмическими уравнениями нет. Достаточно знать свойства логарифма и уметь применять их. В задачах ЕГЭ, связанных с преобразованием логарифмических выражений, выполняются более серьёзные преобразования и требуются более глубокие навыки в решении. Такие примеры мы рассмотрим, не пропустите! Успехов вам!!!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Введение

Логарифмы были придуманы для ускорения и упрощения вычислений. Идея логарифма, т. е. идея выражать числа в виде степени одного и того же основания, принадлежит Михаилу Штифелю. Но во времена Штифеля математика была не столь развита и идея логарифма не нашла своего развития. Логарифмы были изобретены позже одновременно и независимо друг от друга шотландским учёным Джоном Непером(1550-1617) и швейцарцем Иобстом Бюрги(1552-1632) Первым опубликовал работу Непер в 1614г. под названием «Описание удивительной таблицы логарифмов», теория логарифмов Непера была дана в достаточно полном объёме, способ вычисления логарифмов дан наиболее простой, поэтому заслуги Непера в изобретении логарифмов больше, чем у Бюрги. Бюрги работал над таблицами одновременно с Непером, но долгое время держал их в секрете и опубликовал лишь в 1620г. Идеей логарифма Непер овладел около1594г. хотя таблицы опубликовал через 20 лет. Вначале он называл свои логарифмы «искусственными числами» и уже потом предложил эти «искусственные числа» называть одним словом «логарифм», который в переводе с греческого- «соотнесённые числа», взятые одно из арифметической прогресси, а другое из специально подобранной к ней геометрической прогресси. Первые таблицы на русском языке были изданы в1703г. при участии замечательного педагога 18в. Л. Ф Магницкого. В развитии теории логарифмов большое значение имели работы петербургского академика Леонарда Эйлера. Он первым стал рассматривать логарифмирование как действие, обратное возведению в степень, он ввёл в употребление термины «основание логарифма» и «мантисса» Бригс составил таблицы логарифмов с основанием 10. Десятичные таблицы более удобны для практического употребления, теория их проще, чем у логарифмов Непера. Поэтому десятичные логарифмы иногда называют бригсовыми. Термин «характеристика» ввёл Бригс.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата – "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") – со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Логарифмические уравнения и неравенства

1. Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

log a x = b . (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = a b .

Пример 1. Решить уравнения:

a) log 2 x = 3, b) log 3 x = -1, c)

Решение. Используя утверждение 1, получим a) x = 2 3 или x = 8; b) x = 3 -1 или x = 1 / 3 ; c)

или x = 1.

Приведем основные свойства логарифма.

Р1. Основное логарифмическое тождество:

где a > 0, a ≠ 1 и b > 0.

Р2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:

log a N 1 ·N 2 = log a N 1 + log a N 2 (a > 0, a ≠ 1, N 1 > 0, N 2 > 0).


Замечание. Если N 1 ·N 2 > 0, тогда свойство P2 примет вид

log a N 1 ·N 2 = log a |N 1 | + log a |N 2 | (a > 0, a ≠ 1, N 1 ·N 2 > 0).

Р3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя

(a > 0, a ≠ 1, N 1 > 0, N 2 > 0).

Замечание. Если

, (что равносильно N 1 N 2 > 0) тогда свойство P3 примет вид (a > 0, a ≠ 1, N 1 N 2 > 0).

P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:

log a N k = k log a N (a > 0, a ≠ 1, N > 0).

Замечание. Если k - четное число (k = 2s ), то

log a N 2s = 2s log a |N | (a > 0, a ≠ 1, N ≠ 0).

P5. Формула перехода к другому основанию:

(a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),

в частности, если N = b , получим

(a > 0, a ≠ 1, b > 0, b ≠ 1). (2)

Используя свойства P4 и P5, легко получить следующие свойства

(a > 0, a ≠ 1, b > 0, c ≠ 0), (3) (a > 0, a ≠ 1, b > 0, c ≠ 0), (4) (a > 0, a ≠ 1, b > 0, c ≠ 0), (5)

и, если в (5) c - четное число (c = 2n ), имеет место

(b > 0, a ≠ 0, |a | ≠ 1). (6)

Перечислим и основные свойства логарифмической функции f (x ) = log a x :

1. Область определения логарифмической функции есть множество положительных чисел.

2. Область значений логарифмической функции - множество действительных чисел.

3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 log a x 1 < log a x 2), а при 0 < a < 1, - строго убывает (0 < x 1 < x 2 log a x 1 > log a x 2).

4. log a 1 = 0 и log a a = 1 (a > 0, a ≠ 1).

5. Если a > 1, то логарифмическая функция отрицательна при x (0;1) и положительна при x (1;+∞), а если 0 < a < 1, то логарифмическая функция положительна при x  (0;1) и отрицательна при x (1;+∞).

6. Если a > 1, то логарифмическая функция выпукла вверх, а если a (0;1) - выпукла вниз.

Следующие утверждения (см., например, ) используются при решении логарифмических уравнений.

Логарифмические уравнения. От простого - к сложному.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифмическое уравнение?

Это уравнение с логарифмами. Вот удивил, да?) Тогда уточню. Это уравнение, в котором неизвестные (иксы) и выражения с ними находятся внутри логарифмов. И только там! Это важно.

Вот вам примеры логарифмических уравнений :

log 3 х = log 3 9

log 3 (х 2 -3) = log 3 (2х)

log х+1 (х 2 +3х-7) = 2

lg 2 (x+1)+10 = 11lg(x+1)

Ну, вы поняли... )

Обратите внимание! Самые разнообразные выражения с иксами располагаются исключительно внутри логарифмов. Если, вдруг, в уравнении обнаружится икс где-нибудь снаружи , например:

log 2 х = 3+х,

это будет уже уравнение смешанного типа. Такие уравнения не имеют чётких правил решения. Мы их пока рассматривать не будем. Кстати, попадаются уравнения, где внутри логарифмов только числа . Например:

Что тут сказать? Повезло вам, если попалось такое! Логарифм с числами - это какое-то число. И всё. Достаточно знать свойства логарифмов, чтобы решить такое уравнение. Знания специальных правил, приёмов, приспособленных именно для решения логарифмических уравнений, здесь не требуется.

Итак, что такое логарифмическое уравнение - разобрались.

Как решать логарифмические уравнения?

Решение логарифмических уравнений - штука, вообще-то, не очень простая. Так и раздел у нас - на четвёрку... Требуется приличный запас знаний по всяким смежным темам. Кроме того, существует в этих уравнениях особая фишка. И фишка это настолько важная, что её смело можно назвать главной проблемой в решении логарифмических уравнений. Мы с этой проблемой в следующем уроке детально разберёмся.

А сейчас - не волнуйтесь. Мы пойдём правильным путём, от простого к сложному. На конкретных примерах. Главное, вникайте в простые вещи и не ленитесь ходить по ссылкам, я их не просто так поставил... И всё у вас получится. Обязательно.

Начнём с самых элементарных, простейших уравнений. Для их решения желательно иметь представление о логарифме, но не более того. Просто без понятия логарифма, браться за решение логарифмических уравнений - как-то и неловко даже... Очень смело, я бы сказал).

Простейшие логарифмические уравнения.

Это уравнения вида:

1. log 3 х = log 3 9

2. log 7 (2х-3) = log 7 х

3. log 7 (50х-1) = 2

Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них. В простейших уравнениях этот переход осуществляется в один шаг. Потому и простейшие.)

И решаются такие логарифмические уравнения на удивление просто. Смотрите сами.

Решаем первый пример:

log 3 х = log 3 9

Для решения этого примера почти ничего знать и не надо, да... Чисто интуиция!) Что нам особо не нравится в этом примере? Что-что... Логарифмы не нравятся! Правильно. Вот и избавимся от них. Пристально смотрим на пример, и у нас возникает естественное желание... Прямо-таки непреодолимое! Взять и выкинуть логарифмы вообще. И, что радует, это можно сделать! Математика позволяет. Логарифмы исчезают, получается ответ:

Здорово, правда? Так можно (и нужно) делать всегда. Ликвидация логарифмов подобным образом - один из основных способов решения логарифмических уравнений и неравенств. В математике эта операция называется потенцирование. Есть, конечно, свои правила на такую ликвидацию, но их мало. Запоминаем:

Ликвидировать логарифмы безо всяких опасений можно, если у них:

а) одинаковые числовые основания

в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве.

Поясню последний пункт. В уравнении, скажем,

log 3 х = 2log 3 (3х-1)

убирать логарифмы нельзя. Двойка справа не позволяет. Коэффициент, понимаешь... В примере

log 3 х+log 3 (х+1) = log 3 (3+х)

тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два.

Короче, убирать логарифмы можно, если уравнение выглядит так и только так:

log а (.....) = log а (.....)

В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение. Предполагается, конечно, что решать линейные, квадратные, дробные, показательные и прочие уравнения без логарифмов вы уже умеете.)

Теперь легко можно решить второй пример:

log 7 (2х-3) = log 7 х

Собственно, в уме решается. Потенцируем, получаем:

Ну что, очень сложно?) Как видите, логарифмическая часть решения уравнения заключается только в ликвидации логарифмов... А дальше идёт решение оставшегося уравнения уже без них. Пустяшное дело.

Решаем третий пример:

log 7 (50х-1) = 2

Видим, что слева стоит логарифм:

Вспоминаем, что этот логарифм - какое-то число, в которое надо возвести основание (т.е. семь), чтобы получить подлогарифменное выражение, т.е. (50х-1).

Но это число равно двум! По уравнению. Стало быть:

Вот, в сущности, и всё. Логарифм исчез, осталось безобидное уравнение:

Мы решили это логарифмическое уравнение исходя только из смысла логарифма. Что, ликвидировать логарифмы всё-таки проще?) Согласен. Между прочим, если из двойки логарифм сделать, можно этот пример и через ликвидацию решить. Из любого числа можно логарифм сделать. Причём, такой, какой нам надо. Очень полезный приём в решении логарифмических уравнений и (особо!) неравенств.

Не умеете из числа логарифм делать!? Ничего страшного. В разделе 555 этот приём подробно описан. Можете освоить и применять его на полную катушку! Он здорово уменьшает количество ошибок.

Совершенно аналогично (по определению) решается и четвёртое уравнение:

Вот и все дела.

Подведём итоги этого урока. Мы рассмотрели на примерах решение простейших логарифмических уравнений. Это очень важно. И не только потому, что такие уравнения бывают на контрольных-экзаменах. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим!

Собственно, простейшие уравнения - это финишная часть решения любых уравнений. И эту финишную часть надо понимать железно! И ещё. Обязательно дочитайте эту страничку до конца. Есть там сюрприз...)

Решаем теперь самостоятельно. Набиваем руку, так сказать...)

Найти корень (или сумму корней, если их несколько) уравнений:

ln(7х+2) = ln(5х+20)

log 2 (х 2 +32) = log 2 (12x)

log 16 (0,5х-1,5) = 0,25

log 0,2 (3х-1) = -3

ln(е 2 +2х-3) = 2

log 2 (14х) = log 2 7 + 2

Ответы (в беспорядке, разумеется): 42; 12; 9; 25; 7; 1,5; 2; 16.

Что, не всё получается? Бывает. Не горюйте! В разделе 555 решение всех этих примеров расписано понятно и подробно. Там уж точно разберётесь. Да ещё и полезные практические приёмы освоите.

Всё получилось!? Все примеры "одной левой"?) Поздравляю!

Пришло время открыть вам горькую правду. Успешное решение этих примеров вовсе не гарантирует успех в решении всех остальных логарифмических уравнений. Даже простейших, подобных этим. Увы.

Дело в том, что решение любого логарифмического уравнения (даже самого элементарного!) состоит из двух равноценных частей. Решение уравнения, и работа с ОДЗ. Одну часть - решение самого уравнения - мы освоили. Не так уж и трудно, верно?

Для этого урока я специально подобрал такие примеры, в которых ОДЗ никак на ответе не сказывается. Но не все такие добрые, как я, правда?...)

Посему надо обязательно освоить и другую часть. ОДЗ. Это и есть главная проблема в решении логарифмических уравнений. И не потому, что трудная - эта часть ещё проще первой. А потому, что про ОДЗ просто забывают. Или не знают. Или и то, и другое). И падают на ровном месте...

В следующем уроке мы расправимся с этой проблемой. Вот тогда можно будет уверенно решать любые несложные логарифмические уравнения и подбираться к вполне солидным заданиям.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

С уравнениями мы все знакомы с начальных классов. Еще там мы учились решать самые простые примеры, и надо признать, что они находят свое применение даже в высшей математике. С уравнениями все просто, в том числи и с квадратными. Если у вас проблемы с этой темой, настоятельно рекомендуем вам повторить ее.

Логарифмы вы, вероятно, тоже уже прошли. Тем не менее, считаем важным рассказать, что это для тех, кто еще не знает. Логарифм приравнивается к степени, в которую нужно возвести основание, чтобы получилось число, стоящее справа от знака логарифма. Приведем пример, исходя из которого, вам все станет ясно.

Если вы возведете 3 в четвертую степень получится 81. Теперь подставьте по аналогии числа, и поймете окончательно, как решаются логарифмы. Теперь осталось лишь совместить два рассмотренных понятия. Изначально ситуация кажется чрезвычайно сложной, но при ближайшем рассмотрении весе становится на свои места. Мы уверены, что после этой короткой статьи у вас не будет проблем в этой части ЕГЭ.

Сегодня выделяют множество способов решения подобных конструкций. Мы расскажем о самых простых, эффективных и наиболее применимых в случае заданий ЕГЭ. Решение логарифмических уравнений должно начинаться с самого простого примера. Простейшие логарифмические уравнения состоят из функции и одной переменной в ней.

Важно учесть, что x находится внутри аргумента. A и b должны быть числами. В таком случае вы можете попросту выразить функцию через число в степени. Выглядит это следующим образом.

Разумеется, решение логарифмического уравнения таким методом приведет вас к верному ответу. Ног проблема подавляющего большинства учеников в этом случае заключается в том, что они не понимают, что и откуда берется. В результате приходится мириться с ошибками и не получать желаемых баллов. Самой обидной ошибкой будет, если вы перепутаете буквы местами. Чтобы решить уравнение этим способом, нужно зазубрить эту стандартную школьную формулу, потому что понять ее сложно.

Чтобы было проще, можно прибегнуть к другому способу – канонической форме. Идея крайне проста. Снова обратите внимание на задачу. Помните, что буква a – число, а не функция или переменная. A не равно одному и больше нуля. На b никаких ограничений не действует. Теперь из всех формул вспоминаем одну. B можно выразить следующим образом.

Из этого следует, что все исходные уравнения с логарифмами можно представить в виде:

Теперь мы можем отбросить логарифмы. Получится простая конструкция, которую мы уже видели ранее.

Удобство данной формулы заключается в том, что ее можно применять в самых разных случаях, а не только для самых простых конструкций.

Не переживайте насчет ООФ!

Многие опытные математики заметят, что мы не уделили внимание области определения. Сводится правило к тому, что F(x) обязательно больше 0. Нет, мы не упустили этот момент. Сейчас мы говорим об еще одном серьезном преимуществе канонической формы.

Лишних корней здесь не возникнет. Если переменная будет встречаться лишь в одном месте, то область определения не является необходимостью. Она выполняется автоматически. Чтобы убедиться в данном суждении, займитесь решением нескольких простых примеров.

Как решать логарифмические уравнения с разными основаниями

Это уже сложные логарифмические уравнения, и подход к их решению должен быть особым. Здесь редко получается ограничиться пресловутой канонической формой. Начнем наш подробный рассказ. Мы имеем следующую конструкцию.

Обратите внимание на дробь. В ней находится логарифм. Если вы увидите такое в задании, стоит вспомнить один интересный прием.

Что это значит? Каждый логарифм можно представить в виде частного двух логарифмов с удобным основанием. И у данной формулы есть частный случай, который применим с этим примером (имеем ввиду, если c=b).

Именно такую дробь мы и видим в нашем примере. Таким образом.

По сути, перевернули дробь и получили более удобное выражение. Запомните этот алгоритм!

Теперь нужно, что логарифмическое уравнение не содержало разных оснований. Представим основание дробью.

В математике есть правило, исходя из которого, можно вынести степень из основания. Получается следующая конструкция.

Казалось бы, что мешает теперь превратить наше выражение в каноническую форму и элементарно решить ее? Не все так просто. Дробей перед логарифмом быть не должно. Исправляем эту ситуацию! Дробь разрешается выносить в качестве степени.

Соответственно.

Если основания одинаковые, мы можем убрать логарифмы и приравнять сами выражения. Так ситуация станет в разы проще, чем была. Останется элементарное уравнение, которое каждый из нас умел решать еще в 8 или даже в 7 классе. Расчеты вы сможете произвести сами.

Мы получили единственно верный корень этого логарифмического уравнения. Примеры решения логарифмического уравнения достаточно просты, не так ли? Теперь и у вас получится самостоятельно разобраться даже с самыми сложными задачами для подготовки и сдачи ЕГЭ.

Что в итоге?

В случае с любыми логарифмическими уравнениями мы исходим из одного очень важного правила. Необходимо действовать так, чтобы привести выражение к максимально простому виду. В таком случае у вас будет больше шансов не просто решить задание правильно, но еще и сделать это максимально простым и логичным путем. Именно так всегда действуют математики.

Настоятельно не рекомендуем вам искать сложных путей, особенно в этом случае. Запомните несколько простых правил, которые позволят преобразовать любое выражение. К примеру, привести два или три логарифма к одному основанию или вывести степень из основания и выиграть на этом.

Также стоит помнить о том, что в решении логарифмических уравнений необходимо постоянно тренироваться. Постепенно вы будете переходить ко все более сложным конструкциям, а это приведет вас к уверенному решению всех вариантов задач на ЕГЭ. Готовьтесь к экзаменам заблаговременно, и удачи вам!