Электромагнитное поле и его влияние на здоровье человека. Электромагнитное излучение — воздействие на человека, защита

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.

К неионизирующим электромагнитным полям (ЭМП) и излучениям (ЭМИ) относятся: электростатические поля, постоянные магнитные поля (в т.ч. и геомагнитное поле земли), электрические и магнитные поля промышлен- ной частоты, электромагнитные излучения радиочастотного диапазона , элек- тромагнитные излучения оптического диапазона . К оптической области неио- низирующих излучений принято относить электромагнитные колебания с дли- ной волны от 10 до 34·104 нм. Из них диапазон длин волн от 10 до 380 нм относят к области ультрафиолетового (УФ) излучения, от 380 до 770 нм - к видимой области спектра и от 770 до 34·104 нм - к области инфракрасного (ИК) излучения. Глаз человека имеет наибольшую чувствительность к излуче- ниям с длиной волн 540…550 нм. Особый вид ЭМИ представляет собой лазер- ное излучение (ЛИ) оптического диапазона с длиной волны 102...106 нм. Отли- чие ЛИ от других видов ЭМИ заключается в том, что источник излучения ис- пускает электромагнитные волны строго одной длины волны и в одной фазе.

Электромагнитные поля и излучения являются источником негативного влияния на человека и окружающую среду. Они загрязняют не только произ-


Водственные среды, но и окружающую среду. Сейчас ученые и практикующие экологи называют электромагнитные загрязнения вялотекущей чрезвычайной ситуацией.

Магнитные поля (МП) могут быть постоянными, импульсными и перемен-

ными. Степень воздействия магнитного поля на работающих зависит от макси- мальной напряженности его в рабочей зоне. При действии переменных МП на- блюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия.

Проблема электромагнитного загрязнения возникла в результате резкого

увеличения в последние годы количества различных источников ЭМП техно- генного характера и повлекла за собой необходимость досконального изучения физических основ данного негативного фактора, а также выработки мероприя- тий по защите населения и окружающей среды в условиях действия электро- магнитного загрязнения, превышающего допустимые уровни.

Под электромагнитным загрязнением среды понимается состояние элек-

тромагнитной обстановки, характеризуемое наличием в атмосфере электромаг- нитных полей повышенной интенсивности, создаваемых техногенными и при- родными источниками излучения неионизирующей части электромагнитного спектра.


Под электромагнитным излучением (ЭМИ) понимается процесс образова- ния электромагнитного поля.

Электромагнитное поле (ЭМП) представляет собой особую форму мате-

рии, состоящую из взаимосвязанных электрического и магнитного полей.

Электрическое поле представляет собой систему из замкнутых силовых ли- ний, создаваемых заряженными электрическими телами различных знаков или переменным магнитным полем. Постоянное электрическое поле создается не- подвижными электрическими зарядами.

Магнитное поле представляет собой систему из замкнутых силовых линий,

создаваемых при движении по проводнику электрических зарядов. Постоян- ное магнитное поле создается равномерно движущимися в проводнике элек- трическими зарядами постоянного тока.

Физические причины существования переменного электромагнитного поля

связаны с тем, что изменяющиеся во времени электрическое поле порождаеют магнитное поле, а изменения магнитного поля - вихревое электрическое по- ле. Напряженности этих полей, расположенные перпендикулярно друг другу, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или рав- номерно движущихся зарядов неразрывно связаны с ними. При ускорении движения зарядов часть ЭМП отрывается от них и присутствует независимо в форме электромагнитных волн, не исчезая с устранением источника их образо-


Вания. Критерием интенсивности электрического поля является его напря- женность E с единицей измерения В/м. Критериями интенсивности магнитного поля является его напряженность Н с единицей измерения А/м. Основными параметрами источника ЭМП являются частота электромагнитного колеба- ния, измеряемая в герцах (Гц), и длина волны, измеряемая в метрах (м).

Техногенные источники электромагнитного поля производственной среды

(технологические источники) по частотам излучения подразделяются на две группы.

К первой группе относятся источники, генерирующие излучения в диапазо-

не от 0 Гц до 3 кГц. Этот диапазон условно называют промышленные частоты . Источники: системы производства, передачи и распределения электроэнергии (электростанции, трансформаторные подстанции, системы и линии электропе- редач); офисная и домашняя электро- и электронная техника; электросети ад- министративных зданий и сооружений. На объектах железнодорожного транс- порта это системы электроснабжения электрифицированных железнодорожных линий, силовые трансформаторные подстанции, транспорт на электроприводе, системы и линии электропередач депо, грузовых районов, пунктов обработки вагонов и ремонтных производств, электросети административных зданий. К примеру, электротранспорт является мощным источником магнитного поля в


диапазоне частот от 0 до 1000 Гц. Среднее значение магнитной составляющей

ЭМП электропоездов может достигать 200 мкТл (ПДУ = 0,2 мкТл).

Мощными источниками излучения электромагнитной энергии являются провода высоковольтных линий электропередач (ЛЭП) промышленной часто- ты 50 Гц. Напряженность ЭМП, создаваемого ЛЭП, зависит от величины на- пряжения (в России - от 330 до 1150 кВ), нагрузки, высоты подвески прово- дов, расстояния между проводами ЛЭП. Напряженность ЭМП непосредствен- но над проводами и в определенной зоне вдоль трассы ЛЭП может значительно превышать ПДУ электромагнитной безопасности населения, особенно по маг- нитной составляющей. Негативное влияние электрических сетей в производст- венных и административных зданиях обусловлено тем, что человек постоянно находится в помещении вблизи электропроводки, в том числе проложенной не- экранированно. Кроме этого, наличие в зданиях железосодержащих конструк- ций и коммуникаций создает эффект «экранированного помещения», что уси- ливает электромагнитный эффект при расположении в них большого количест- ва различных источников излучения, в том числе и сетей электропроводки.

Ко второй группе технологических источников относятся источники, гене- рирующие излучения в диапазоне от 3 кГц до 300 ГГц. Излучения этого диапа- зона условно называют радиочастотами.

Источниками излучения радиочастотного диапазона являются:


офисная электро- и электронная техника;

теле- и радиопередающие центры;

системы получения информации, сотовая и спутниковая связь, релейные

навигационные системы;

радиолокационные станции (РЛС) различного вида и назначения;

оборудование, использующее сверхвысокочастотное излучение (видео-

дисплейные терминалы, СВЧ-печи, медицинские диагностические уста-

РЛС, используемые для управления движением воздушного транспорта и имеющие остронаправленные антенны кругового обзора, работают круглосу- точно и создают ЭМП высокой интенсивности. Системы сотовой связи по- строены на принципе деления территории на зоны (соты) радиусом 0,5…2 км, в центре которых располагаются базовые станции (БС), обслуживающие мо- бильные средства связи. Антенны БС создают опасные уровни напряженности в радиусе 50 м.

На объектах железнодорожного транспорта широко используются мнемо- схемы (у диспетчеров), видеодисплейные терминалы (ВДТ) и персональные ЭВМ (в кассах продажи железнодорожных билетов, в диспетчерских пунктах, в бухгалтериях и др.).


ВДТ на основе электронно-лучевых трубок являются источниками ЭМИ весьма широкого диапазона частот: низкочастотное, средних частот, высоко- частотное излучение, рентгеновское, ультрафиолетовое, видимое, инфракрас- ное (достаточно высокой интенсивности). Зона превышения ПДУ может дос- тигать 2,5 м. Зоны превышения ПДУ вблизи установок закалки рельсов тока- ми высокой частоты (ТВЧ), индукционной сушки, электроламповых генераторов также оказываются более 3 м. Зона влияния электрического по- ля - пространство, в котором напряженность электрического поля превышает

5 кВ/м. Зона влияния магнитного поля - пространство, в котором напряжен- ность магнитного поля превышает 80 А/м.

Особую группу составляют источники ЭМИ военного характера, специаль-

но генерирующие ЭМП для вывода из строя объектов инфраструктуры и для нанесения поражения населению. К ним относятся: радиочастотное электро- магнитное оружие различных видов, лазерное оружие и др.

Не исключено воздействие ЭМИ на объекты и при террористических актах.

К объектам, которые могут подвергаться воздействию специально генерируе- мого мощного ЭМП могут относиться объекты так называемых «критических инфраструктур», от нормального функционирования которых зависит, в ос- новном, национальная безопасность и жизнедеятельность государства: прави- тельственная связь, телекоммуникации, системы энергоснабжения, водоснаб-


Жения, системы управления, транспортные системы, системы противоракетной обороны (ПРО), стратегические средства и т.д. Большинство объектов этих систем хранят и передают информацию с использованием электромагнитных полей. При воздействии электромагнитного потока высокой интенсивности на технологические элементы этих объектов может произойти уничтожение всей информации на данном объекте либо нарушение системы связи между этими объектами. И в том и в другом случае отдельные объекты и определенные

«критические инфраструктуры» нормально функционировать не будут.

Кроме этого, ЭМП высокой интенсивности могут вызывать расплавление металла различных технологических линий, что приведет, в свою очередь, к структурным изменениям в технологических устройствах и системах объектов.

Что такое ЭМП, его виды и классификация

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.

Магнитное поле создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Электромагнитные волны характеризуются длиной волны, обозначение - l (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой, обозначение - f.

Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < l ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3l . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.

В "дальней" зоне излучения есть связь между Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.

Международная классификация электромагнитных волн по частотам

Наименование частотного диапазона

Границы диапазона

Наименование волнового диапазона

Границы диапазона

Крайние низкие, КНЧ

Декамегаметровые

Сверхнизкие, СНЧ

30 – 300 Гц

Мегаметровые

Инфранизкие, ИНЧ

Гектокилометровые

1000 - 100 км

Очень низкие, ОНЧ

Мириаметровые

Низкие частоты, НЧ

30 - 300 кГц

Километровые

Средние, СЧ

Гектометровые

Высокие частоты, ВЧ

Декаметровые

Очень высокие, ОВЧ

30 - 300 МГц

Метровые

Ультравысокие,УВЧ

Дециметровые

Сверхвысокие, СВЧ

Сантиметровые

Крайне высокие, КВЧ

30 - 300 ГГц

Миллиметровые

Гипервысокие, ГВЧ

300 – 3000 ГГц

Децимиллиметровые

2. Основные источники эмп

Среди основных источников ЭМИ можно перечислить:

    Электротранспорт (трамваи, троллейбусы, поезда,…)

    Линии электропередач (городского освещения, высоковольтные,…)

    Электропроводка (внутри зданий, телекоммуникации,…)

    Бытовые электроприборы

    Теле- и радиостанции (транслирующие антенны)

    Спутниковая и сотовая связь (транслирующие антенны)

  • Персональные компьютеры

2.1 Электротранспорт

Транспорт на электрической тяге – электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции В в пригородных "электричках" достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл. Типичный результат долговременных измерений уровней магнитного поля, генерируемого железнодорожным транспортом на удалении 12 м от полотна, приведен на рисунке.

2.2 Линии электропередач

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП - например ЛЭП 220 кВ), чем выше напряжение - тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.

Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие

Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.

У растений распространены аномалии развития - часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической. При продолжительном пребывании (месяцы - годы) людей в электромагнитном поле ЛЭП могут развиваться заболевания преимущественно сердечно-сосудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы

Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.

Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина - нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности.

На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный" уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 - 0,3 мкТл.

Принципы обеспечения безопасности населения

Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.

Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля - 1 кВ/м.

Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84

Напряжение ЛЭП

Размер санитарно-защитной (охранной) зоны

Границы санитарно-защитных зон для ЛЭП в г. Москве

Напряжение ЛЭП

Размер санитарно-защитной зоны

К размещению ВЛ ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно.

Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно:

330 кВ - 2 провода, 500 кВ - 3 провода, 750 кВ - 4 провода. Ниже 330 кВ по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде: 220 кВ 10 -15 шт., 110 кВ 6-8 шт., 35 кВ 3-5 шт., 10 кВ и ниже - 1 шт.

Допустимые уровни воздействия электрического поля ЛЭП

ПДУ, кВ/м

Условия облучения

внутри жилых зданий

на территории зоны жилой застройки

в населенной местности вне зоны жилой застройки; (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов) а также на территории огородов и садов;

на участках пересечения воздушных линий электропередачи с автомобильными дорогами 1 – IV категорий;

в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья);

в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения.

В пределах санитарно-защитной зоны ВЛ запрещается:

    размещать жилые и общественные здания и сооружения;

    устраивать площадки для стоянки и остановки всех видов транспорта;

    размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;

    производить операции с горючим, выполнять ремонт машин и механизмов.

Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда.

В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее 2 м.

Защита человека от вредного воздействия электромагнитного поля промышленной частоты

В настоящее время в быту и на производстве широко используются приборы и электроустановки различного назначения, распространяющие электромагнитные поля. Среди различных физических факторов окружающей среды, которые могут оказывать неблагоприятные воздействия на человека, большую опасность представляет электромагнитное поле (ЭМП) промышленной частоты 50 Гц.

Источники электромагнитных полей

Органы чувств человека не воспринимают электромагнитные поля. Человек не может контролировать уровень излучения и оценить грозящую опасность, своего рода электромагнитного смога. Электромагнитное излучение распространяется во всех направлениях и оказывает, прежде всего, воздействие на человека, работающего с прибором-излучателем, и на окружающую среду (в том числе и на другие живые организмы). Известно, что магнитное поле возникает вокруг любого предмета, работающего от электрического тока. Элементарным источником ЭМП является обычный проводник, по которому проходит переменный ток любой частоты, т.е. практически любой электроприбор, применяемый человеком в быту, является источником ЭМП.

Электрические сети, опутывающие стены наших квартир, хорошо можно увидеть в период их монтажа, еще до оштукатуривания стен. Это, прежде всего, разводка сетей ко всем розеткам и выключателям, а также кабели и различного вида удлинители электробытовых приборов. Добавьте сюда еще и кабели, питающие жилые дома от городских трансформаторных подстанций, разводку электросетей по этажам дома к электросчетчикам и средствам автоматической защиты каждой квартире, систему электропитания лифтов и освещения коридоров, подъездов домов и т.д.

В повседневной деятельности в условиях территории, занятой жилой и общественной застройкой, улицами, площадями общего пользования, человек также подвергается действию ЭМП промышленной частоты от разных источников.

Через жилые районы городов проложены воздушные линии электропередачи (ЛЭП). Воздушные ЛЭП глубокого ввода напряжением 10, 35 и 110 кВ, проходящие через жилую застройку, затрагивают небольшую часть жителей городов и населенных пунктов, но вызывают обоснованные жалобы с их стороны даже при отсутствии превышения предельно допустимых уровней (ПДУ) электромагнитного поля. Среди других источников электромагнитных полей промышленной частоты достаточно широко распространены открытые распределительные устройства трансформаторных подстанций, городской электротранспорт (контактные сети троллейбусов и трамваев) и железнодорожный электротранспорт, как правило, или приближенный к жилым корпусам, или перерезающий населенные пункты (села, города и пр.). Конечно, стены домов, особенно из железобетонных панелей, являются экранами и, тем самым, снижают уровень ЭМП, однако не учитывать воздействие внешних ЭМП на человека нельзя. В табл.1 приведены средние уровни электромагнитного поля на открытой территории и внутри жилых помещений , который практически представляет собой среднестатистический промышленный район.

Помимо внутренних и внешних электросетей не следует забывать еще и внутренние и локальные источники ЭМП, максимально приближенные к человеку. К ним можно отнести физиотерапевтическую аппаратуру больниц, бытовые электропотребители, питаемые от электросетей с промышленной частотой 50 Гц.

Замеры напряженности магнитных полей, создаваемых бытовыми электроприборами, показали, что их кратковременное воздействие оказывается даже более сильным, чем долговременное пребывание человека рядом с линиями электропередачи. Уровень напряженности магнитного поля на различных расстояниях от бытовых приборов до человека, мГс, приведен в табл.2.

Воздействие ЭМП на организм человека

Степень биологического влияния ЭМП на организм человека зависит от частоты колебаний, напряженности поля и его интенсивности.

Человеческое тело представляет собой некий сосуд, наполненный жидкостью, проводимость которой объясняется наличием в ней гемоглобина, содержащей в крови человека комплексные соединения железа с белком. Таким образом, имеются благоприятные условия, когда внешние переменное магнитное поле может наводить в железистом белке тела человека ток и создать возможность взаимодействия красных кровяных телец с этим полем.

Известно, что при мощности 10 мВт/см2 облучаемой поверхности ткань человека может прогреться на несколько десятых долей градуса. А от частоты излучения зависит интенсивность поглощения электромагнитной энергии в теле человека.

Действие ЭМП особенно большой напряженности (распределительного устройства подстанций и линий электропередачи напряжения 330 - 500 - 750 - 1500 кВ) проявляется по-разному. Находясь в ЭМП, тело человека заряжается при любом соприкосновении с металлической конструкцией подстанции или ЛЭП, что приводит к разрядному импульсу. Установлено , что время такого импульса составляет микросекунды. Эффект этого разряда напоминает ощущение неприятного неожиданного укола. Последствием этого может быть ослабление хватательной способности пальцев и в целом кистей рук, потеря, возможно, на какие-то микросекунды, психологической ориентации и пр., что может привести к травмам: падению верхолаза с высоты опоры, ушибу рабочих, стоящих внизу, инструментом, выпавшим из рук верхолаза и т.д.

В целом интенсивное ЭМП промышленной частоты вызывают у рабочих:

Нарушение функционального состояния центральной нервной, сердечнососудистой и эндокринной систем;

Головокружение, нарушение сна, повышение сонливости, вялости, утомляемости, снижение точности движений;

Изменение кровяного давления и пульса, возникновение болей в сердце, сопровождаемых головной болью и аритмией и т.д.

нарушение половой функции;

Ухудшение развития эмбриона;

Все эти изменения в организме человека фиксируются при медицинских обследованиях (анализ крови, электрокардиографии и т.п.)

За последние годы появилась информация о том, что источником злокачественных новообразований может быть ЭМП промышленной частоты.

Защита человека от ЭМП

Для защиты людей от вредного влияния ЭМП применяются нормативы и стандарты, которые представляют собой некий компромисс между преимуществами применения новых технологий и новой техники и возможным риском, причиненным этим применением.

Допустимые уровни неионизирующих излучений различных видов и диапазонов частот и т.д.

В основе установления предельно допустимых уровней (ПДУ) лежит принцип пороговости вредного воздействия ЭМП на человека. В качестве ПДУ ЭМП предусмотрены такие уровни, которые при систематическом облучении в рабочем режиме для данного конкретного источника ЭМП не вызывают у людей (без ограничения пола и возраста) заболеваний и отклонений в состоянии здоровья. В табл.3 приведены допустимые уровни напряженности поля от ЛЭП промышленной частоты.

Однако важным является не только величина напряженности ЭМП, но и продолжительность нахождения человека в зоне действия этого поля. На основе исследований, разработаны следующие нормативы для электрических полей промышленной частоты, предусматривающие ограничение времени пребывания человека в зоне источника ЭМП (см. табл.4)

При напряженности ЭМП 5 кВ/м производство работ не ограничивается как по характеру, так и по длительности выполнения. При напряженности более 25 кВ/м, а также, если требуется большая продолжительность пребывания человека в ЭМП, чем приведено выше, работы должны выполняться с применением средств защиты, например специальной одежды, ткань которой обладает свойствами экрана. В качестве тканей используются ткани с проводящей краской, ткани, содержащие волокна из гибкой медной проволоки, ткани с нитями из проводящего полимера и т.д.

В качестве предупредительных мер предусматривается осуществление постоянного контроля электромагнитной обстановки путем проведения электромагнитного мониторинга, а также прогнозирования развития в целом для предприятия или организации электромагнитной обстановки .

Размеры санитарно-защитных зон ЛЭП в зависимости от их класса напряжения (f = 50 Гц) приведены в табл.5.

Под санитарно-защитной зоной понимается так называемая охранная зона, имеющая условное направление вдоль воздушной линии электропередачи и отсчитываемая от проекции крайних проводов ЛЭП по земле.

Следует заметить, что регламентация размеров санитарно-защитной зоны ЛЭП осуществляется при классе напряжения ЛЭП 330 кВ и выше по электрической составляющей. Однако по магнитной составляющей электромагнитного поля ЛЭП, более опасной, чем электрическая составляющая, размеры санитарно-защитной зоны предположительно могут составлять 200...400 м. Исследования по установлению окончательных размеров охранной зоны по магнитной составляющей следует продолжить.

Размещать жилые здания;

Предусматривать стоянки и остановки всех видов транспорта;

Устраивать любые спортивные и игровые площадки;

Собирать грибы, любые плоды, ягоды и особенно лекарственные растения.

Для контроля за электромагнитной ситуацией в жилых домах или в офисных помещениях, где находится человек, используются приборы, состоящие из регистратора интенсивности ЭМП (переменного и электростатического) типа РИЭП - 50/20 и регистратора интенсивности магнитного поля РИМП 50/2,4, дающие световой и звуковой сигналы при превышении ПДУ для данного источника.

Предусматривается также защита людей от воздействия ЭМП так называемым методом расстояний от источников ЭМП, т.е. санитарно-защитной зоны, размеры которой зависят от напряженности источника (табл.4).

Что касается методов защиты человека в жилых помещениях, то на этот счет можно дать некоторые практические рекомендации.

Поскольку в собственной квартире полностью избавиться от бытовых электроприборов практически невозможно, желательно соблюдать следующие правила:

Не устанавливать над кроватью средства освещения (бра, светильники с плафонами), светопоток от которых обращен вниз, на Вас, - свет должен быть направлен только вверх;

Не устанавливать в спальне телевизор, компьютер, «базу» радиотелефона, который лучше заменить обычным;

Не ставить у изголовья электронные часы (будильник);

Отключать от сети на ночь телевизор, музыкальный центр, проигрыватель и прочие источники электромагнитного излучения, которые могут находиться в дежурном режиме и т.д.

Отказаться по возможности от систематического использования электрических бритв;

Применять утюги с бифилярной обмоткой нагревательных спиралей (такая обмотка не обладает индуктивностью).

Выводы

На основе отечественных и зарубежных исследований установлено наличие связей некоторых заболеваний населения с воздействием электромагнитных излучений, в частности ЭМП.

Установление указанных взаимосвязей является предметом дальнейших исследований электромагнитной нагрузки с учетом статистических показателей состояния здоровья отдельных групп населения, в том числе с учетом профессии, возраста, пола и т.д.

Литература

Дунаев В.Н. Формирование электромагнитной нагрузки в условиях городской среды//Санитария и гигиена. - 2002. - №5. -С.31-34.

Емельянов В. Мероприятия по защите населения и территорий в условиях электромагнитного загрязнения окружающей среды//Основы безопасности жизнедеятельности. -2000. - №1. - С.58-61.

К источникам ЭМП на произ­водстве относятся две большие группы:

* изделия, которые специально созданы для излучения электромагнитной энергии: радио- и телевизионные вещательные станции, радиолокационные установки, физиотерапевтические ап­параты, различные системы радиосвязи, технологические установки в промышленности. ЭМП широко используются в промышленности, например, в таких технологических процес­сах, как закалка и отпуск стали, накатка твердых сплавов на ре­жущий инструмент, плавка металлов и полупроводников и т. д.;

Электростатические поля (ЭСП) создаются в энергетических установках и при электротехнических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов) или стацио­нарного электрического поля (электрическое поле постоянного тока). В промышленности ЭСП широко используются для электро­газоочистки, электростатической сепарации руд и материалов, элек­тростатического нанесения лакокрасочных и полимерных материа­лов. Статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных схем, шлифовке и полировке футляров радиотелевизионных приемников, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где используются диэлектрические материалы. Электро­статические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и неко­торых сыпучих материалов по трубопроводам, переливании жидко­стей-диэлектриков, скатывании пленки или бумаги в рулон.

Магнитные поля создаются электромагнитами, соленоидами, установками конденсаторного типа, литыми и металлокерамическими магнитами и др. устройствами.

В ЭМП различаются три зоны, которые формируются на раз­личных расстояниях от источника ЭМИ.

Первая зона – зона индукции (ближняя зона) охватывает проме­жуток от источника излучения до расстояния, равного примерно л/2п«1/6л. В этой зоне электромагнитная волна еще не сформиро­вана и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо.

Вторая зона – зона интерференции (промежуточная зона) располагается на расстояниях примерно от л/2л до 2лл. В этой зоне про­исходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие.

Третья зона – волновая зона (дальняя зона) располагается на расстояниях свыше 2лл. В этой зоне ЭМВ сформирована, электриче­ское и магнитное поля взаимосвязаны. На человека в этой зоне воз­действует энергия волны.

Воздействие неионизирующих излучений на человека. Электромагнитные поля биологически активны – живые существа реагируют на их действие. Однако у человека нет специального органа чувств для определения ЭМП (за исключением оптического диапазона). Наиболее чувствительны к электромагнитным полям центральная нервная система, сердечно-сосудистая, гормональная и репродук­тивная системы.

Длительное воздействие на человека электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в сердце, нарушение ритма сердечных сокращений. Могут наблюдаться функциональные нарушения в центральной нервной системе, а также изменения в составе крови.

Воздействие электростатического поля на человека связано с протеканием через него слабого тока. При этом электротравм никог­да не наблюдается. Однако вследствие рефлекторной реакции на протекающий ток возможна механическая травма от удара о распо­ложенные рядом элементы конструкций, падение с высоты и т.д. К ЭСП наиболее чувствительны центральная нервная система, сердечно-сосудистая система. Люди, работающие в зоне действия ЭСП, жалуются на раздражительность, головную боль, нарушение сна.

При воздействии магнитных полей могут наблюдаться наруше­ния функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в составе крови. При локаль­ном действии магнитных полей (прежде всего на руки) появляется ощущение зуда, Сходность и синюшность кожных покровов, отеч­ность и уплотнение, а иногда ороговение кожи.

Воздействие ЭМИ радиочастотного диапазона определяется плотностью потока энергии, частотой излучения, продолжительно­стью воздействия, режимом облучения (непрерывное, прерывистое, импульсное), размером облучаемой поверхности тела, индивидуаль­ными особенностями организма. Воздействие ЭМИ может проявля­ться в различной форме – от незначительных изменений в некото­рых системах организма до серьезных нарушений в организме. По­глощение организмом человека энергии ЭМИ вызывает тепловой эффект. Начиная с определенного предела организм человека не справляется с отводом теплоты от отдельных органов, и их темпера­тура может повышаться. В связи с этим воздействие ЭМИ особенно вредно для тканей и органов со слаборазвитой сосудистой системой и недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузыри). Облучение глаз может привести к ожогам роговицы, а облучение ЭМИ СВЧ-диапазона – к помутне­нию хрусталика – катаракте.

При длительном воздействии ЭМИ радиочастотного диапазона даже умеренной интенсивности могут произойти расстройства нер­вной системы, обменных процессов, изменения состава крови. Мо­гут также наблюдаться выпадение волос, ломкость ногтей. На ран­ней стадии нарушения носят обратимый характер, но в дальнейшем происходят необратимые изменения в состоянии здоровья, стойкое снижение работоспособности и жизненных сил.