Что означает sin. Cинус, косинус, тангенс и котангенс - все, что нужно знать на ОГЭ и ЕГЭ


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

    Примеры:

    \(\cos{⁡30^°}=\)\(\frac{\sqrt{3}}{2}\)
    \(\cos⁡\)\(\frac{π}{3}\) \(=\)\(\frac{1}{2}\)
    \(\cos⁡2=-0,416…\)

    Аргумент и значение

    Косинус острого угла

    Косинус острого угла можно определить с помощью прямоугольного треугольника - он равен отношению прилежащего катета к гипотенузе.

    Пример :

    1) Пусть дан угол и нужно определить косинус этого угла.


    2) Достроим на этом угле любой прямоугольный треугольник.


    3) Измерив, нужные стороны, можем вычислить косинус.


    Косинус числа

    Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с : \(\frac{π}{2}\) , \(\frac{3π}{4}\) , \(-2π\).

    Например, для числа \(\frac{π}{6}\) - косинус будет равен \(\frac{\sqrt{3}}{2}\) . А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


    Косинус для других часто встречающихся в практике чисел смотри в .

    Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.

    Косинус любого угла

    Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать - проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


    Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

    Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ ), делаем также, но \(60°\) откладываем по часовой стрелке.


    И, наконец, угол больше \(360°\) (угол КОС ) - всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).


    Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) - целых семь.

    Как вы могли заменить, и косинус числа, и косинус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.

    Знаки косинуса по четвертям

    С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по числовой (тригонометрической) окружности:

    Там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
    - там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III четверти – фиолетовая область).


    Связь с другими тригонометрическими функциями:

    - того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
    - того же угла (или числа): формулой \(1+tg^2⁡x=\)\(\frac{1}{\cos^2⁡x}\)
    - и синусом того же угла (или числа): формулой \(ctgx=\)\(\frac{\cos{x}}{\sin⁡x}\)
    Другие наиболее часто применяемые формулы смотри .

    Решение уравнения \(\cos⁡x=a\)

    Решение уравнения \(\cos⁡x=a\), где \(a\) – число не большее \(1\) и не меньшее \(-1\) т.е. \(a∈[-1;1]\):

    \(\cos ⁡x=a\) \(⇔\) \(x=±\arccos⁡a+2πk, k∈Z\)


    Если \(a>1\) или \(a<-1\), то решений у уравнения нет.

    Пример . Решите тригонометрическое уравнение \(\cos⁡x=\)\(\frac{1}{2}\).
    Решение:

    Решим уравнение с помощью числовой окружности. Для этого:
    1) Построим оси.
    2) Построим окружность.
    3) На оси косинусов (оси \(y\)) отметим точку \(\frac{1}{2}\) .
    4) Проведем перпендикуляр к оси косинусов через эту точку.
    5) Отметим точки пересечения перпендикуляра и окружности.
    6)Подпишем значения этих точек: \(\frac{π}{3}\) ,\(-\)\(\frac{π}{3}\) .
    7) Запишем все значения соответствующие этим точкам с помощью формулы \(x=t+2πk\), \(k∈Z\):
    \(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\);


    Ответ: \(x=±\frac{π}{3}+2πk\) \(k∈Z\)

    Функция \(y=\cos{x}\)

    Если отложить по оси \(x\) углы в радианах, а по оси \(y\) - соответствующие этим углам значения косинуса, мы получим следующий график:


    График данной называется и обладает следующими свойствами:

    Область определения – любое значение икса: \(D(\cos{⁡x})=R\)
    - область значений – от \(-1\) до \(1\) включительно: \(E(\cos{x})=[-1;1]\)
    - четная: \(\cos⁡(-x)=\cos{x}\)
    - периодическая с периодом \(2π\): \(\cos⁡(x+2π)=\cos{x}\)
    - точки пересечения с осями координат:
    ось абсцисс: \((\)\(\frac{π}{2}\) \(+πn\),\(;0)\), где \(n ϵ Z\)
    ось ординат: \((0;1)\)
    - промежутки знакопостоянства:
    функция положительна на интервалах: \((-\)\(\frac{π}{2}\) \(+2πn;\) \(\frac{π}{2}\) \(+2πn)\), где \(n ϵ Z\)
    функция отрицательна на интервалах: \((\)\(\frac{π}{2}\) \(+2πn;\)\(\frac{3π}{2}\) \(+2πn)\), где \(n ϵ Z\)
    - промежутки возрастания и убывания:
    функция возрастает на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
    функция убывает на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
    - максимумы и минимумы функции:
    функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
    функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).

    Разбираемся с простыми понятиями: синус и косинус и вычисление косинуса в квадрате и синуса в квадрате .

    Синус и косинус изучаются в тригонометрии (науке о треугольниках с прямым углом).

    Поэтому для начала вспомним основные понятия прямоугольного треугольника:

    Гипотенуза - сторона, которая всегда лежит напротив прямого угла (угла в 90 градусов). Гипотенуза - это самая длинная сторона треугольника с прямым углом.

    Оставшиеся две стороны в прямоугольном треугольнике называются катетами .

    Также следует помнить, что три угла в треугольнике всегда имеют сумму в 180°.

    Теперь переходим к косинусу и синусу угла альфа (∠α) (так можно назвать любой непрямой угол в треугольнике или использовать в качестве обозначение икс - «x» , что не меняет сути).

    Синус угла альфа (sin ∠α) - это отношение противолежащего катета (сторона, лежащая напротив соответствующего угла) к гипотенузе. Если смотреть по рисунку, то sin ∠ABC = AC / BC

    Косинус угла альфа (cos ∠α) - отношение прилежащего к углу катета к гипотенузе. Если снова смотреть по рисунку выше, то cos ∠ABC = AB / BC

    И просто для напоминания: косинус и синус никогда не будут больше единицы, так как любой катит короче гипотенузы (а гипотенуза - это самая длинная сторона любого треугольника, ведь самая длинная сторона расположена напротив самого большого угла в треугольнике).

    Косинус в квадрате, синус в квадрате

    Теперь переходим к основным тригонометрическим формулам: вычисление косинуса в квадрате и синуса в квадрате.

    Для их вычисления следует запомнить основное тригонометрическое тождество:

    sin 2 α + cos 2 α = 1 (синус квадрат плюс косинус квадрат одного угла всегда равняются единице).

    Из тригонометрического тождества делаем выводы о синусе:

    sin 2 α = 1 - cos 2 α

    синус квадрат альфа равен единице минус косинус двойного угла альфа и всё это делить на два.

    sin 2 α = (1 – cos(2α)) / 2

    ​​​​​​​Из тригонометрического тождества делаем выводы о косинусе:

    cos 2 α = 1 - sin 2 α

    или более сложный вариант формулы: косинус квадрат альфа равен единице плюс косинус двойного угла альфа и также делим всё на два.

    cos 2 α = (1 + cos(2α)) / 2

    Эти две более сложные формулы синуса в квадрате и косинуса в квадрате называют еще «понижение степени для квадратов тригонометрических функций». Т.е. была вторая степень, понизили до первой и вычисления стали удобнее.

    Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

    Понятие угла: радиан, градус

    Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

    Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

    Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

    Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

    То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

    Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

    Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

    Где - центральный угол в радианах.

    Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

    Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

    А сколько радиан составляют? Всё верно!

    Уловил? Тогда вперёд закреплять:

    Возникли трудности? Тогда смотри ответы :

    Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

    Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

    Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты - это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет - это прилежащий катет, а катет - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

    Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

    В нашем треугольнике.

    Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

    В нашем треугольнике.

    Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

    В нашем треугольнике.

    Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

    В нашем треугольнике.

    Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

    Косинус→касаться→прикоснуться→прилежащий;

    Котангенс→касаться→прикоснуться→прилежащий.

    В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

    Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

    Если разобрался в определениях, то вперёд закреплять их!

    Для треугольника, изображённого ниже на рисунке, найдём.

    Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

    Единичная (тригонометрическая) окружность

    Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

    Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

    Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

    Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

    А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

    Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

    А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

    А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

    Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

    Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

    Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

    Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

    Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

    Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

    Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

    Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

    Вот тебе в помощь единичная окружность:

    Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

    Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

    Не существует;

    Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

    Ответы:

    Не существует

    Не существует

    Не существует

    Не существует

    Таким образом, мы можем составить следующую табличку:

    Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

    А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

    Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

    Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

    Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

    Координаты точки на окружности

    А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

    Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

    Вот, к примеру, перед нами такая окружность:

    Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

    Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

    Тогда имеем, что для точки координата.

    По той же логике находим значение координаты y для точки. Таким образом,

    Итак, в общем виде координаты точек определяются по формулам:

    Координаты центра окружности,

    Радиус окружности,

    Угол поворота радиуса вектора.

    Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

    Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

    1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

    2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

    3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

    4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

    5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

    Возникли проблемы в нахождении координот точки на окружности?

    Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

    1.

    Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

    2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

    Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

    Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

    Таким образом, искомая точка имеет координаты.

    3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

    Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

    Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

    Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

    Таким образом, искомая точка имеет координаты.

    4.

    Угол поворота радиуса вектора (по условию,)

    Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

    Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

    Подставим полученные значения в нашу формулу и найдём координаты:

    Таким образом, искомая точка имеет координаты.

    5. Для решения данной задачи воспользуемся формулами в общем виде, где

    Координаты центра окружности (в нашем примере,

    Радиус окружности (по условию,)

    Угол поворота радиуса вектора (по условию,).

    Подставим все значения в формулу и получим:

    и - табличные значения. Вспоминаем и подставляем их в формулу:

    Таким образом, искомая точка имеет координаты.

    КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

    Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

    Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

    Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

    Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

    Где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉

    Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них - забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал.

    Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением, и с приёмами словесно-логической связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко вспомните.

    Напомню определения синуса и косинуса в прямоугольном треугольнике:

    Косинус острого угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе:

    Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

    Итак, какие ассоциации у вас вызывает слово косинус?

    Наверное, у каждого свои 😉 Запоминайте связку:

    Таким образом, у вас сразу в памяти возникнет выражение –

    «… отношение ПРИЛЕЖАЩЕГО катета к гипотенузе ».

    Проблема с определением косинуса решена.

    Если нужно вспомнить определение синуса в прямоугольном треугольнике, то вспомнив определение косинуса, вы без труда установите, что синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе. Ведь катетов всего два, если прилежащий катет «занят» косинусом, то синусу остаётся только противолежащий.

    Как быть с тангенсом и котангенсом? Путаница та же. Учащиеся знают, что это отношение катетов, но проблема вспомнить какой к которому относится – то ли противолежащий к прилежащему, то ли наоборот.

    Определения:

    Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему:

    Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему:

    Как запомнить? Есть два способа. Один так же использует словесно-логическую связь, другой – математический.

    СПОСОБ МАТЕМАТИЧЕСКИЙ

    Есть такое определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

    *Запомнив формулу, вы всегда сможете определить, что тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему.

    Аналогично. Котангенсом острого угла называется отношение косинуса угла к его синусу:

    Итак! Запомнив указанные формулы вы всегда сможете определить, что:

    — тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему

    — котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему.

    СПОСОБ СЛОВЕСНО-ЛОГИЧЕСКИЙ

    О тангенсе. Запомните связку:

    То есть если потребуется вспомнить определение тангенса, при помощи данной логической связи, вы без труда вспомните, что это

    «… отношение противолежащего катета к прилежащему»

    Если речь зайдёт о котангенсе, то вспомнив определение тангенса вы без труда озвучите определение котангенса –

    «… отношение прилежащего катета к противолежащему»

    Есть интересный приём по запоминанию тангенса и котангенса на сайте " Математический тандем " , посмотрите.

    СПОСОБ УНИВЕРСАЛЬНЫЙ

    Можно просто зазубрить. Но как показывает практика, благодаря словесно-логическим связкам человек запоминает информацию надолго, и не только математическую.

    Надеюсь, материал был вам полезен.

    С уважением, Александр Крутицких

    P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.