Стадии канцерогенеза. Канцерогенез - процесс канцерогенеза Мутационный канцерогенез промоция

Развитие опухоли в результате действия химических канцерогенов в настоящее время рассматривается как процесс не одномоментный, а многоэтапный. Многостадийность канцерогенеза может иметь два аспекта 1) этнологический - каждая стадия вызывается своим специфическим агентом, 2) морфологический - каждая стадия имеет только ей присущие морфологические и биологические проявления.

Рассмотрение первого аспекта имеет прямое отношение к пониманию этиологических факторов, играющих роль в возникновении и развитии злокачественных опухолей человека. Наиболее принятой схемой в настоящее время является двух стадийная на первой стадии (инициации) происходит описанное выше взаимодействие генотоксичесхого канцерогена с геномом клетки, приводящее к ее полной или частичной трансформации.

На второй стадии (промоции) происходит или превращение частично трансформированной клетки в опухолевую клетку, или пролиферация полностью трансформированной клетки с образованием опухоли. Эта гипотеза о двухстадийном развитии опухолей была предложена более 40 лет тому назад на основании опытов, проведенных на коже мышей, где в качестве инициатора применялась однократная субканиерогенная доза БП, MX или ДМБА (7,12-диметилбенз(а)антрацен), а в качестве промотора - длительное нанесение кротонового масла.

Были установлены определенные закономерности инициации - промоции комбинация инициатор - промотор эффективна лишь в указанной, а не в обратной последовательности; инициация необратима, а промоция до определенного момента обратима, т е отмена промотора может вести к регрессии возникших папиллом, инициатор может быть применен однократно, а промотор должен обязательно применяться длительно; эффект от комбинации инициатора с промотором во много раз превышает сумму эффектов каждого из них, взятого в отдельности, и т. д. Последнее было особенно демонстративно: если применявшаяся доза ПАУ и применявшаяся доза кротонового масла сами по себе или вовсе не вызывали папиллом кожи, или вызывали единичные опухоли, то их комбинация в указанной последовательности приводила к появлению множественных папиллом у всех или почти у всех мышей. При достаточно длительном нанесении кротонового масла часть папиллом малигнизировалась.

Поскольку в этих опытах примененная доза кротонового масла опухолей сама по себе не вызывала, был сделан вывод о том, что инициация - промоция - это усиление канцерогенеза неканцерогенным агентом. Практическое значение этого вывода должно было быть велико, учитывая, что неканцерогенных агентов, способных стимулировать рост опухолей, в окружающей человека среде заведомо больше, чем самих канцерогенов Развитие опухолей под влиянием одних канцерогенов (без каких-либо дополнительных воздействий) объясняли тем, что они обладают н инициирующей н промоторной активностью, и их стали называть «полными» канцерогенами.

В течение трех десятилетий этот феномен воспроизводился лишь на коже мышей, поэтому его стали считать экспериментальным курьезом, не имеющим отношения ие только к человеку, но и к развитию опухолей в других органах животных Начиная с 70-х годов феномен инициации - промоции был воспроизведен на опухолях внутренних органов мышей, крыс и хомяков, вызванных самыми различными канцерогенами. Поскольку гипотеза двухстадий-ного канцерогенеза ныне постоянно используется при анализе возможных причин развития опухолей человека, следует вкратце остановиться на новых экспериментальных моделях инициации - промоции.

Использование этих моделей позволило выделить 2 группы стимуляторов канцерогенеза одни, влияющие на транспорт, метаболизм канцерогенов, их связывание с ДНК, т е на стадию инициации опухолей (их назвали коканцерогенами), и другие - промоторы, стимулирующие пролиферацию в уже возникших опухолевых клетках, т е ускоряющие рост опухоли, каким бы канцерогеном она ни была вызвана Модификаторы, тормозящие эти стадии канцерогенеза, называют актиканцерогеиами и антипромоторами соответственно. Таким образом, если модификатор вводится перед или одновременно с действием канцерогена, то он будет влиять на инициации Для изучения промоторной активности модификатор должен вводиться обязательно после прекращения действия канцерогена.

В качестве инициаторов в подобных опытах используют канцерогены» тропные к данному органу Наибольшее число исследований проведено на опухолях печени крыс: здесь промоторный эффект оказывали фенобарбитал, полихлорбифенилы, пестициды, ДДТ и диэлдрин, гексахлорбензол, эстрогенные препараты, желчные кислоты, причем разработаны ускоренные системы для обнаружения промоторной активности Для опухолей толстой кншки у крыс промоторами являются некоторые желчные кислоты, диета с высоким содержанием жира Для опухолей мочевого пузыря - сахарин, аллопуринол, аскорбикат натрия, эриторбат натрия, фенилфенат натрия, фенотиазин, бутилгидроксванинзол. В отношении опухолей почек у крыс промоторами были тестостерона пропионат, нефротоксические агенты (фолиевая кислота, дихлорфеинлеукцинимид, натриевая соль нитрилоуксусной кислоты, циклодекстрин и др.).

Индукция опухолей матки и молочной железы может быть ускорена эстрогенами, а опухолей железистого желудка у крыс - желчными кислотами, поваренной солью, опухолей щитовидной железы - метил- и пропилтиоурацилом, йод-дефицитной диетой, 3-амиио-1,2,4-триазолом, фенобарбиталом, 4,4"-диаминодифенилметаном

Мишенью канцерогенных агентов физической природы также является ДНК. Допускается либо их прямое действие на ДНК, либо через посредников - своеобразные медиаторы канцерогенеза.
К последним относят свободные радикалы кислорода, липидов и других органических и неорганических веществ.
Первый этап физического канцерогенеза - инициация опухолевого роста. Он заключается в прямом или опосредованном воздействии агентов физической природы на ДНК. Это вызывает либо повреждение ее структуры (генные мутации, хромосомные аберрации), либо эпигеномные изменения. Как первое, так и второе может привести к активации протоонкогенов и последующую опухолевую трансформацию клетки.
Второй этап - промоции. На этом этапе осуществляется экспрессия онкогена и модификация нормальной клетки в раковую. В результате последовательных циклов пролиферации формируется опухоль.

Трансформация

Несмотря на большое число канцерогенов и разнообразие клинических форм опухолевого роста очевидно, что на уровне клетки происходит общее закономерное изменение - трансформация нормальной генетической программы в программу формирования опухолевого атипизма.
В основе опухолевой трансформации лежат стойкие изменения ДНК.
При этом программа опухолевого роста становится фрагментом общей реализуемой клеткой программы, закодируемой в ее геноме.
Единый конечный результат действия канцерогенов различной природы (химической, биологической, физической) на клетки и как результат - их опухолевая трансформация, обеспечивающая нарушением взаимодействия в клеточном геноме онкогенов и антионкогенов. Стимуляция канцерогенами экспрессии онкогенов и/или депрессия антионкогенов и обеспечивает опухолевую трансформацию клеток.

Онкогены и протоонкогены

Вирусные онкогены и контролирующие клеточный цикл и пролиферацию клеточные гены имеют как сходство, так и важные отличия. В связи с этим говорят о протоонкогенах и онкогенах.
Протоонкоген - ген нормального генома, участвует в пролиферации клеток. Продукты экспрессии протоонкогенов во многих случаях важны для нормальной дифференцировки клеток и межклеточных взаимодействий. В результате соматических мутаций протоонкоген может стать онкогенным. В этом случае к имени протоонкогена может быть добавлена приставка с (от cellular - клеточный), вирусные гомологи маркируют приставкой v (от viral - вирусный).
Онкоген - один из генов, в обычных условиях (т.е. в качестве протоонкогена) кодирующий белок, обеспечивающий пролиферацию и дифференцировку клеточных популяций (протеинкиназы, ГТФазы, ядерные белки, факторы роста). Так, ген с-erbB кодирует рецептор фактора роста эпидермиса, а ген erbA - рецептор стероидных гормонов. У опухолевых ДНК-вирусов онкогены кодируют нормальные вирусные белки; онкогены, однако, могут спровоцировать - в случае их мутаций или активации ретровирусами - злокачественный рост.
Идентифицировано множество онкогенов (например, ras jge (опухоли мочевого пузыря); р53, мутантный ген хромосомы 17 (нормально принимает участие в репарации вызванных УФИ генных дефектов). Мутации р53 ответственны за развитие рака молочной железы, шейки матки, яичника, легкого; RET важен для морфогенетических процессов в эмбриогенезе, экспрессируется в озлокачественных С-клетках (продуцирующих кальцитонин) щитовидной железы, клетках феохромацитомы.
Малигнизирующие эффекты онкогенов могут быть усилены ретровирусами, так называемыми «прыгающими» генами, мутациями.
Онкогены найдены в некоторых ДНКовых опухолевых вирусах. Они необходимы для репликации вируса (трасформирующий ген).
К онкогенам относятся также гены вируса или ретровируса, вызывающие злокачественные перерождения клетки-хозяина, но необязательные для репликации вируса.

Онкосупрессоры

Трансформированные (опухолевые) клетки делятся бесконтрольно и неограниченно долго. Онкосупрессоры, или антионкогены (например, белок р53) тормозят их пролиферацию.
Белок р53 - один из важнейших регуляторов клеточного цикла. Этот белок специфически связывается с ДНК и подавляет рост клеток в фазе G1. Он регистрирует различные сигналы при воздействиях на клетку (вирусная инфекция, гипоксия) и состояние ее генома (активация онкогенов, повреждения ДНК). При неблагоприятной информации о состоянии клетки р53 блокирует клеточный Цикл до тех пор, пока нарушения не будут устранены. В поврежденных клетках содержание р53 возрастает. Это дает клетке шансы восстановить ДНК путем блокирования клеточного цикла. При грубых повреждениях р53 инициирует самоубийство клетки - апоптоз. Опухоли (практически в 50%) сопровождаются мутациями гена р53. При этом, несмотря на возможные нарушения генома (включая изменения в количестве хромосом), клетки не входят в апоптоз, а вступают в беспрерывный клеточный цикл. Репертуар мутаций гена р53 широк. Они приводят к бесконтрольному размножению клеток при раке толстой кишки, печени, легкого, пищевода, молочной железы, глиальных опухолей мозга, опухолях лимфоидной системы.
При синдроме Ли-Фромени врожденный дефект р53 является причиной высокой частоты развития карцином.
Белок р26 связывается с циклином и белками Cdk (от англ. cyclin dependent protein kinase - циклин-зависимая протеинкиназа) и блокирует вхождение клетки в S-фазу цикла. Определение р27 используют при диагностике рака молочной железы. Снижение его уровня - прогностически неблагоприятный признак.

Этапы канцерогенеза

Вне зависимости от конкретной причины опухолевой трансформации клетки, гистологической структуры и локализации новообразования в процессе онкогенеза условно выделяют несколько общих этапов:

1. На первом этапе происходит взаимодействие канцерогенов химической, физической и биологической природы с протоонкогенами и антионкогенами (онкосупрессорами) генома нормальной клетки.
2. На втором этапе в результате этого взаимодействия подавляется активность онкосупрессоров и происходит трансформация протоонкогенов в онкогены. Экспрессия онкогена - необходимое и достаточное условие для трансформации нормальной клетки в опухолевую.
3. На третьем этапе в результате подавления активности онкосупрессоров и экспрессии онкогенов синтезируются и реализуют свои эффекты (непосредственно или с участием клеточных ферментов роста и рецепторов к ним) онкобелки. С этого момента генотипически измененная клетка приобретает опухолевый фенотип.
4. На четвертом этапе опухолевая клетка начинает бесконтрольно пролиферировать, что ведет к формированию новообразования (опухолевого узла).

Атипизм трансформированных клеток

Общая характерная черта трансформированных клеток - опухолевый атипизм. Опухолевый атипизм проявляется большим числом признаков, характеризующих рост, структуру, метаболизм и функции клеток. Атипизм клеточного роста характеризуется:

♦ атипизмом пролиферации - значительное увеличение количества делящихся клеток. В нормальных клетках оно составляет не более 5%, а в опухолях количество делящихся клеток 40-60%, (в некоторых опухолях до 100). Увеличение числа делящихся клеток ведет к быстрому нарастанию массы солидной опухоли или суммарного количества клеток (например лейкозных) при гемобластозах. К проявлениям атипизма роста клеток относят:
1. Атипизм деления клеток.
2. Атипизм созревания клеток.
3. Инвазивный рост.
4. Метастазирование.
5. Рецидивирование.

♦ атипизмом дифференцировки, который заключается в частичном или полном подавлении процесса созревания (дифференцировки) опухолевых клеток;

♦ инвазивным ростом, характеризующимся проникновением клеток опухоли в окружающие нормальные ткани. Сочетается с их деструкцией. К причинам инвазивного роста относят:
1. Снижение межклеточной адгезии.
2. Ослабевание свойства контактного торможения клеток. Уменьшение (в 3-6 раз по сравнению с нормальной тканью) сил сцепления (адгезии) между клетками опухоли и отделением в связи с этим клеток от опухолевого узла. Это обусловлено:
дефицитом в межклеточном пространстве и на поверхности опухолевых клеток молекул адгезии (например, кадгеринов, катенинов, ламинина, фибронектина, витронектина);
повышенным гидролизом органических молекул межклеточного вещества ферментами, высвобождаемыми опухолевыми и другими клетками.
1. Выработка клетками факторов, стимулирующих их движение.
2. Наличие в окружающих тканях хемотоксинов.
3. Увеличение электростатического отталкивания клеток. Это характеризуется увеличением отрицательного заряда внешней поверхности опухолевых клеток в связи с фиксацией на ней отрицательно заряженных радикалов и уменьшением содержания катионов (Са2+, Na+ и др.). Это и способствует электростатическому отталкиванию их друг от друга и отталкиванию от опухолевого узла.
4. Способность клеток к амебоидному движению. Этому способствует изменение физико-химических свойств цитолеммы (например, снижение поверхностного натяжения) и цитозоля (облегченный переход из состояния геля в золь и наоборот).
5. Синтез большого числа рецепторов к лигандам молекул адгезии, в том числе - к межклеточному фибронектину, ламинину базальных мембран и внеклеточного матрикса, коллагену, витронектину. Это способствует прикреплению клеток новообразования к неклеточным структурам и перемещению по их поверхности.

♦ метаболическим атипизмом (биохимическим), который заключается в существенном изменении всех видов обмена веществ:
атипизмом обмена нуклеиновых кислот (в опухоли увеличен синтез ДНК и РНК) в результате экспрессии онкогенов и других генов опухолевой клетки. Этому способствует:
о уменьшение содержания в них гистонов и других ядерных белков, выполняющих роль супрессоров синтеза ДНК;
о увеличению кинетической активности ДНК и РНК-полимераз и других ферментов метаболизма нуклеиновых кислот.
атипизмом белкового обмена, который проявляется:
о усилением включения аминокислот в реакции протеосинтеза (феномен «опухоль-ловушка азота»);
о интенсификацией синтеза различных классов белков (структурных, ферментов, онкобелков и других) при одновременном уменьшении или прекращении синтеза ряда иных белков (например, гистонов);
о изменением антигенного профиля опухолей. Это обусловлено модификациями макромолекул белка. Нарушения метаболизма в новообразованиях, с одной стороны, обеспечивают реализацию большинства других проявлений их атипизма, лежащих в основе прогрессирующего опухолевого роста, а с другой - способствует активации механизмов антибластомной защиты организма, появлением у клеток опухоли антигенов, не свойственных нормальным аутологическим клеткам.
атипизм обмена углеводов. Метаболизм углеводов в опухолях характеризуется рядом особенностей:
о активацией реакций транспорта и утилизации клетками бластомы глюкозы (феномен-«опухоль-ловушка углеводов»). При этом выявляется 3 важных закономерности метаболизма глюкозы в опухолевых клетках: о возрастание в несколько раз включение глюкозы в реакции гликолиза; о устранение феномена торможения гликолитического окисления глюкозы в аэробных условиях (отрицательный эффект Пастера). Это обусловлено снижением активности цитоплазматической глицеро-фосфатдегидрогеназы при одновременной существенной активации лактатдегидрогеназы. В связи с этим в опухолевых клетках интенсивно накапливается молочная кислота; О отсутствие феномена активации потребления глюкозы в процессе тканевого дыхания при оксигенации опухолевых клеток, что свойственно нормальным клеткам, о уменьшением относительной доли тканевого дыхания при ресинтезе АТФ. Если в норме тканевое дыхание обеспечивает этот процесс на 80-85%, то в опухолях - лишь на 10-15%; о интенсификацией процесса прямого окисления углеводов в пентозо-фосфатном цикле.

Причины:
1) увеличение содержания и/или активности ферментов гликолиза в цитозоле;
2) повышение эффективности механизмов транспорта глюкозы в них.

Последствия:
1) обеспечение энергией значительно интенсифицированных пластических процессов;
2) существенное повышение устойчивости клеток новообразования к гипоксии и гипогликемии, а следовательно - увеличение их выживаемости;
3) активация реакций пентозофосфатного цикла способствует синтезу пентоз, необходимых для синтеза нуклеиновых кислот.
♦ атипизм обмена липидов проявляется:
значительным усилением утилизации ВЖК и холестерина (опухоль как «ловушка липидов»);
активизацией синтеза липидных структур клеток;
интенсификацией процессов липопероксидации.

Причины:
1) повышение в опухолевых клетках активности и/или содержания ферментов метаболизма липидов;
2) подавление и/или истощение содержания в опухолях факторов антиоокси-дантной защиты.
Изменение липидного метаболизма в новообразованиях направлено на энергетическое и пластическое обеспечение усиленных анаболических процессов, реакций синтеза структур интенсивно делящихся бластомных клеток. Подобные отклонения в опухолях нередко сочетаются с торможением развития атеросклеротических изменений в стенках сосудов у онкологических больных.

♦ атипизм обмена ионов и воды. В новообразованиях наблюдается избыточное (в сравнении с нормальными аутологическими тканями) накопление ряда ионов и воды, а также изменение соотношения отдельных ионов как в цитозоле бластомных клеток, так и межклеточной жидкости. Например, в ткани ряда опухолей увеличивается [К+] и [Си2+]. Наряду с этим отмечается уменьшение уровня кальция, а в некоторых бластомах - , магния, цинка и других.

Причины:
1) дефекты структуры клеточных мембран;
2) изменение активности и содержание ферментов транспорта ионов (например, снижение активности Na+, К+-АТФазы и др.);
3) повышение осмотического давления в опухолевых клетках;
4) разрушение клеток.
Отклонения характера обмена ионов и воды в новообразованиях способствует реализации других видов атипизма: роста, функции и структуры. Это, в свою очередь, повышает приспособляемость опухоли.
♦ атипизм обмена витаминов. Особенности обмена витаминов в опухолевой ткани изучены недостаточно.

Проявления:
1) многие витамины интенсивно захватываются клетками бластомы. Полагают, что витамины в опухоли используются в качестве предшественников различных коферментов (как и в нормальных клетках), а также - субстратов обмена веществ и пластических процессов, обеспечивающих интенсивный рост и деление бластомных клеток;

2) различные опухоли являются «ловушкой» жирорастворимого витамина Е. Он обладает антиоксидантной активностью в связи с его способностью нейтрализовать свободнорадикальные агенты и способствовать стабилизации клеточных мембран. По-видимому, это является одним из механизмов повышения устойчивости опухолевых клеток к цитотоксическим воздействиям.

Общие признаки обменного атипизма. Помимо указанных выше особенностей отдельных направлений метаболизма для новообразований в целом характерны некоторые общие проявления атипизма обмена веществ. К наиболее значимым среди них относят следующие:

♦ Активное включение в метаболизм опухолей аминокислот, липидов, углеводов, ионов и других веществ (опухоль как «метаболическая ловушка»). Это обеспечивает значительное усиление (в связи с интенсивной пролиферацией бластомных клеток) пластических процессов необходимыми веществами и энергией.

♦ Преобладание в новообразовании анаболических реакций над катаболическими.

♦ Утрата специализации клеток новообразования по сравнению с нормальными - дифференцированными. Это связано с прекращением (или нарушением) синтеза в опухолевых клетках ряда важных для нормального метаболизма ферментов (например, глицерофосфатдегидрогеназы, что ведет к доминированию гликолитического ресинтеза АТФ).

♦ Снижение эффективности местной регуляции обмена веществ на основе механизма обратной связи.

♦ «Ускользание» метаболизма новообразований от системных - нейроген-ных и гормональных - регуляторных влияний. Последнее вызвано, в частности, существенными изменениями рецепторного и пострецепторного аппарата регуляции обмена в клетках бластомы.

♦ Переход опухолевых клеток на более архаичные варианты механизмов регуляции: аутокринный (внутриклеточное управление метаболическими реакциями с помощью веществ, образуемых самой клеткой) и паракринный (управление с помощью веществ-цитокинов, образуемых соседними клетками).
В целом указанные и другие проявления атипизма обмена веществ в опухоли создают условия для существенного повышения ее «конкурентоспособности» и выживаемости в организме.

Атипизм функций. Обычно функции клеток новообразования снижены и/или качественно изменены, реже - повышены.
Нередко наблюдаются признаки гиперфункции как отдельных раковых клеток, так и опухоли в целом. Обычно речь идет о неадекватной потребностям организма продукции каких-либо веществ. Так, ряд гормонально-активных новообразований желез внутренней секреции в избытке синтезируют гормоны. К таким опухолям относят феохромоцитомы, кортикостеромы и альдостеромы (опухоли коркового вещества надпочечников), инсулинома (опухоль из в-клеток поджелудочной железы), раки щитовидной, паращитовидных и других эндокринных желез.
В некоторых опухолях выявляются признаки, не свойственные для нормальных аутологичных тканей. Так, низкодифференцированные клетки карциномы желудка иногда начинают продуцировать коллаген, рака легкого - гормоны аденогипофиза или биогенные амины. Это связано с экспрессией в опухолевых клетках генов, программирующих синтез белков, специфичных для клеток других, чем клетки опухоли, типов.
Таким образом, атипизм функции опухолей обусловливает нарушение деятельности тканей и органов, которые они поражают, а также - расстройство жизнедеятельности организма-опухоленосителя. С учетом этого в онкологии сложилось представление об опухолевой болезни.

Метастазирование

Метастазирование - одно из фатальных проявлений атипизма опухолевого роста - перенос клеток бластомы на расстояние от основного (материнского) узла и развития опухоли того же гистологического строения в другой ткани или органе.

Выделяют следующие пути метастазирования:
♦ Лимфогенный (с током лимфы по лимфатическим сосудам). Это наиболее частый путь метастазирования опухолей, особенно карцином. Даже при небольшом размере новообразования возможен перенос его клеток по лимфатическим сосудам и фиксация их в регионарных и отдаленных лимфоузлах.

♦ Гематогенный (с током крови по кровеносным сосудам). Этим путем чаще метастазируются клетки сарком.

♦ Тканевой или имплантационный. Метастазирование таким путем осуществляется при соприкосновении опухолевой клетки с поверхностью нормальной ткани или органа (например, при контакте рака желудка с поверхностью брюшины или рака легкого с плеврой); при имплантации бластомных клеток, находящихся в жидкостях организма, например, брюшной, плевральной полости, в ликворе и др., на поверхность органов, соответственно брюшной и грудной полости, спинного и головного мозга.

♦ Смешанный путь - метастазирование по нескольким путям одновременно или последовательно.

Этапы метастзирования

Этапы лимфо- и гематогенного метастазирования следующие:
♦ Отделение злокачественной клетки от опухоли и ее инвазия в стенку лимфатического или кровеносного сосуда (интравагинация).
♦ Эмболия - циркуляция в лимфатических и кровеносных сосудах опухолевой клетки с последующей ее имплантацией на внутренней поверхности эндотелия стенки сосуда. Этот этап метастазирования осуществляется благодаря действию нескольких факторов:
Снижению эффективности антицеллюлярных механизмов противоопухолевой защиты организма.
Экранированию антигенов опухолевых клеток фибриновой пленкой, образующейся на их поверхности.
♦ Инвазия опухолевых клеток в стенку сосуда и далее - в окружающую их ткань (экстравазация).
В последующем опухолевые клетки пролиферируют и формируют еще один опухолевый узел - метастаз.
Метастазы характеризуются органной избирательностью метастазирования. Так, клетки рака легкого чаще метастазируют в кости, печень, головной мозг; рака желудка - в яичники, ткани дна таза; рака молочной железы - в кости, легкие, печень. Подобную тропность метастазирования определяют следующие факторы:
♦ специфика обмена веществ в органе;
♦ особенности лимфо- и кровоснабжения;
♦ низкая эффективность механизмов антибластомной резистентности;
♦ положительный хемотаксис.

Рецидивирование новообразования - повторное его развитие того же гистологического строения на прежнем месте после его удаления или деструкции. Причиной этого процесса являются опухолевые клетки, оставшиеся в ткани при неполном удалении новообразования, либо в связи с предшествующим внедрением отдельных клеток бластомы в окружающую нормальную ткань.

Допускается также возможность внедрения в геном нормальной клетки в зоне роста новообразования содержащего онкогены участка ДНК из разрушившихся при хирургическом удалении или хемо- и лучевой терапии клеток бластомы. Повторное развитие опухоли нередко характеризуется ускоренным ее ростом. Это является результатом, с одной стороны, повреждения местных тканей в ходе хирургического или иного вмешательства, а с другой - снижения эффективности факторов системы иммунобиологического надзора.

Опухолевая прогрессия

Изменения в геноме, приводящие к трансформации нормальной клетки в опухолевую - лишь первый этап на пути дальнейшей модификации генома. В генетической программе, ставшей опухолевой, постоянно происходят изменения, в основе которых лежат следующие мутации. Это проявляется:

♦ фенотипически изменением биохимических, морфологических, электоро-физиологических и функциональных признаков опухоли;
♦ изменениями различных свойств клеток бластомы, которые происходят независимо друг от друга, так как мутации каждого отдельного гена автономны;
♦ сроками изменений свойств разных клеток бластомы, которые сильно варьируют. Поэтому признаки их появляются и изменяются без какой-либо закономерной хронологии;
♦ тем, что при опухолевой прогрессии создаются клоны клеток с самой различной комбинацией признаков (феномен клональной селекции бластомы). В связи с этим разные субклоны клеток одного новообразования могут весьма существенно отличаться друг от друга;
♦ модификациями в геноме опухолевой клетки, которые наследуются, т.е. передаются дочерним клеткам.
Таким образом, опухолевая прогрессия - генетически закрепленное, наследуемое опухолевой клеткой и необратимое изменение одного или нескольких свойств клетки.
Процесс опухолевой прогрессии способствует высокой приспособляемости новообразований и создает условия для нарастания степени их атипизма и, следовательно - их злокачественности.
Взаимодействие опухоли и организма осуществляется при участии всех физиологических систем - нервной, эндокринной, иммуно-биологического надзора, кровообращения и других.

Результат взаимодействия опухоли и организма может проявляться:
♦ гибелью бластомных клеток. Это наблюдается наиболее часто. В организме эти клетки, как правило, сразу же обнаруживаются и уничтожаются при участии факторов системы иммунобиологичесго контроля;
♦ латентным «дремлющем» состоянием опухолевых клеток, которые делятся и образуют сравнительно небольшой клон, не имеющий стромы. Трофика их обеспечивается диффузией веществ из межклеточной жидкости и они, как правило, не инвазируются в окружающую нормальную ткань. Поэтому такую форму опухолевого роста обозначают как неинвазивную («рак на месте» - cancer in situ). Подобное состояние может наблюдаться в течение ряда лет. Оно может завершиться либо гибелью клеток бластомы (при активации системы иммунобиологического котроля), либо интенсификацией ее роста - приобретением способности к инвазии в окружающие ткани, мета-стазированию;
♦ прогрессирующим формированием новообразования с нарастанием степени его атипизма.

В этом случае выделяют:
Местные эффекты новообразования:
1) инвазивный рост, сдавливающий и деструктирующий окружающие нормальные ткани, нарушающий микрогемо- и лимфомикроциркуляцию, что приводит к развитию недостаточности ткани или органа;
2) образование и выделение в межклеточную жидкость метаболитов, биологически активных веществ (гормонов, факторов роста, ферментов, иммунодепрессантов и др.), способных вызывать дисфункцию органов;
3) подавление активности местных факторов системы иммуно-биологического контроля (фагоцитирующих клеток, лифоцитов, лизоцима, интер-ферронов и др., что способствует прогрессии опухолевого роста и развитию воспаления).
Системное влияние новообразования проявляется развитием ряда общих неспецифических синдромов (паранеопластических):
1) кахексия;
2) иммунопатологические состояния.
Кахексия у онкологических больных характеризуется общей слабостью и значительной потерей массы тела. Ее причины:
♦ поглощение опухолевыми клетками субстратов метаболизма, что существенно расстраивает обмен веществ в организме;
♦ интоксикация организма продуктами распада опухоли и окружающих ее тканей;
♦ избыточное образование макрофагами и моноцитами факторов некроза опухолей, который усиливает катаболизм липидов в организме, поэтому его еще называют кахектином;
♦ снижение аппетита из-за опухолевой интоксикации и психической депрессии пациентов;
♦ болевой синдром (при распаде опухоли, сдавление ею окружающих тканей или прорастании в них);
♦ кровотечение из распадающейся ткани новообразования или аррозирован-ных стенок сосудов при инфильтрации опухолью;
♦ нарушения питания, пищеварения и всасывания веществ в желудке и/или кишечнике при развитии в них опухолей или их метастазов.
Иммунопатологические состояния. У онкологических больных часто развиваются различные инфекции вследствие наличия у них своеобразного синдрома приобретенного иммунодефицита.

Причины:
♦ Антигенная перегрузка иммунной системы различными белками, образующимися при распаде опухолей.
♦ Иммуносупрессивное действие избытка глюкокортикоидов, обнаруженного при росте опухолей (что связывают с развитием стрессорного состояния).
♦ Повышение активности Т-супрессоров при росте некоторых опухолей (например, гепатом).
♦ Дефицит субстратов, необходимых для пролиферации и дифференцировки иммуноцитов.
У онкологических больных находят и другие иммунопатологические состояния: аллергические реакции, болезни иммунной аутоагрессии, патологическая толерантность.

Другие паранеопласгические синдромы:

♦ Психоневрологические синдромы (психозы, слабоумие, невропатии, нейро-трофические расстройства).
♦ Эндокринопатии, которые являются результатом нарушения продукции, инкреции и эффектов гормонов, выделяемых как гормонально-активными опухолями, так и непораженными бластомой эндокринными железами.
♦ Тромбогеморрагические синдромы.
♦ Анемии.

Канцерогенез - длительный процесс накопления генетиче­ских повреждений. Латентный период (время от начальный изменений в клетке до первых клинических проявлений) мо­жет длиться до 10-20 лет. Возникновение опухоли - это мно­гостадийный процесс, включающий 3 этапа (стадии):

I этап - инициация (трансформация) - приобретение ис­ходной нормальной клеткой способности беспредельно раз­множаться. Все теории, исторически подготовившие базу для открытия молекулярных механизмов канцерогенеза, исходили из общей посылки, что превращение нормальной клетки в опу­холевую (трансформация, или инициация) является результа­том стойких изменений в геноме клетки - мутации одного из генов, регулирующих клеточное размножение. Вследствие это­го клетка становится инициированной (потенциально способ­ной к неограниченному размножению), но требующей для про­явления этой способности ряда дополнительных условий. Инициирующими факторами служат различные канцерогены, вызывающие повреждения ДНК.

Каковы же современные представления о молекулярных механизмах канцерогенеза? На сегодня установлено, что в нор­мальных клетках в ДНК имеется участок гомологичный по иуклеотидному составу онкогену вирусов, а точнее - для каж­дого из 20 известных ретровирусных онкогенов в геноме нор­мальных и опухолевых клеток различных видов животных имеется свой клеточный аналог. В нормальных клетках кле­точный аналог вирусного онкогена неактивен и назван протоонкогеном. В опухолевых клетках он активен и называется кле­точным онкогеном.

Переход неактивного клеточного онкогена (протоонкогена) в активный клеточный онкоген происходит под влиянием химических, физических и биологических канцерогенов. Вы­деляют 4 основных механизма активации протоонкогенов:

1. Включение (вставка) промотора. Промотор - это уча­сток ДНК, с которым связывается РНК-полимераза, иниции­руя транскрипцию онкогена. Проявлению активирующего дей­ствия промотора способствует его расположение рядом с про-тоонкогеном («в непосредственной близости»). В роли промо­торов для протоонкогенов могут выступать ДНК-копии опре­деленных участков онкорнавирусов, а также «прыгающие ге­ны», которые представляют собой мобильные сегменты ДНК, способные перемещаться и встраиваться в разные участки ге­нома клеток.

2. Амплификация, т.е. увеличение числа (копий) про­тоонкогенов, которые в норме обладают небольшой активнос­тью. В итоге общая активность протоонкогенов значительно возрастает, что в конце концов может привести к опухолевой трансформации клетки.

3. Транслокация протоонкогенов. Установлено, что пере­мещение протоонкогена в локус с функционирующим промо­тором превращает его в клеточный онкоген.


4. Мутации протоонкогенов. Введение в геном клетки хо­тя бы одной копии клеточного онкогена (мутация) сопровож­дается активацией протоонкогенов.

Вслед за превращением протоонкогенов в активные кле­точные онкогены начинается экспрессия активных клеточных онкогенов. Она проявляется в увеличении синтеза онкобелков или в синтезе структурно измененных онкобелков. Затем на­чинается превращение (трансформация) нормальной клетки в опухолевую благодаря следующим механизмам:

а) онкобелки соединяются с рецепторами для факторов роста и образуют комплексы, постоянно генерирующие сигна­лы к делению клеток;

б) онкобелки повышают чувствительность рецепторов к факторам роста или понижают чувствительность к ингибито­рам роста;

в) онкобелки сами могут действовать как факторы роста.

Говоря о трансформации неопухолевых клеток в опухоле­вые, следует остановиться на гипотезе Хьюгса, которая в из­вестной степени отвечает на вопрос, каким образом опухоле­вая клетка становится «бессметрной», т.е. утрачивает лимит Хейфлика и приобретает способность к постоянному делению. Согласно этой гипотезы, регуляция деления в каждой клетке осу­ществляется системой, состоящей из трех регуляторных генов:

1. Ген-инициатор клеточного деления, кодирующий синтез белка - инициатора клеточного деления.

2. Ген-репрессор I, который кодирует синтез белка - репрессора I. Репрессор I выключает функционирование гена-инициатора клеточного деления.

3. Ген-репрессор II, кодирующий синтез белка - репрессора II. Репрессор II выключает функционирование гена-ре-прессора I.

При активации гена-репрессора I синтезируется репрессор I, который выключает ген-инициатор клеточного деления, в результате этого прекращается синтез белка-инициатора кле­точного деления, и деление клеток прекращается. В свою оче­редь, ген-репрессор I находится под контролем гена-репрессо­ра II, который кодирует синтез репрессора II, а он ингибирует ген-репрессор I. И далее, компоненты белка инициатора кле­точного деления способны выключать (репрессировать) ген-репрессор II.

Таким образом, система регуляции клеточного деления работает по принципу обратной связи, что обеспечи­вает ей автономность и определенную интенсивность клеточ­ного деления. «Обратная связь» в работе системы генов, регу­лирующих клеточное деление, заключается в репрессии гена-репрессора II компонентами инициатора клеточного деления.

При повреждении гена-репрессора I (воздействие радиа­ции или химических канцерогенов) белок репрессор I не син­тезируется, а значит ген-инициатор клеточного деления все время продуцирует инициатор клеточного деления - в итоге отмечается постоянное бесконечное деление опухолевых кле­ток. Это так называемый мутационный канцерогенез .

Некоторые канцерогенные факторы, например, вирусы, мо­гут создавать устойчивое нарушение нормальной регуляции генома соматической клетки хозяина путем интеграции с ге­ном-репрессором II этой клетки. В результате этого инициа­тор клеточного деления может выключить только ген-репрес­сор II хозяина, а на вирусном гене, интегрированном рядом с геном-репрессором II в клетку хозяина, будет продолжаться синтез репрессора II - в итоге будет происходить безудерж­ное деление клеток (опухолевых). Такой канцерогенез назы­вается эпигеномным (геном клетки хозяина не подвергается мутации!).

II этап - промоция, или активизация опухолевых клеток. Трансформированные клетки длительное время могут оста­ваться в ткани в неактивной форме, а дополнительное воздей­ствие ко канцерогенных факторов запускает амплификацию он­когенов, активирует новые протоонкогены, вызывает дополни­тельные генные и хромосомные аберрации, обусловливает включение промотора. Промоторы - множество химических веществ, которые сами не вызывают повреждения ДНК и не являются канцерогенами, но их постоянное воздействие на инициированные клетки приводит к возникновению опухоли. Вследствие этого опухолевые клетки, до этого находившиеся в латентном состоянии, начинают интенсивно размножаться, образуя первичный опухолевый узел. Главное в промоции -стимуляция клеточного деления, вследствие чего создается критическая масса инициированных клеток, что обусловлива­ет высвобождение инициированных клеток из-под тканевого контроля и способствует - мутационному процессу.

III этап - опухолевая прогрессия, или стойкие качествен­ные изменения свойств опухоли в сторону малигнизации, воз­никающие по мере ее роста. Опухолевая прогрес­сия - это не просто увеличение опухоли в размерах, это каче­ственное изменение ее части с появлением по существу новой опухоли, обладающей ранее отсутствовавшими свойствами, что может быть связано с отбором клеточных клонов, а также с мутацией опухолевых клеток. Прогрессия опухоли осуществ­ляется посредством отбора клеточных популяций с их непре­рывным развитием в направлении все большей автономии, де­структивного роста, инвазивности, способности к образованию метастазов и поразительную приспособляемость к меняющим­ся условиям существования.

Опухолевая прогрессия в отличие от дифференцировки нормальных тканей происходит независимо и несопряженно (В.С. Шабад, 1980), а поэтому развитие опухоли никогда нель­зя считать завершенным. Прогрессия касается и первичных, и вторичных признаков. Первичным или «неотъемлемым» при­знаком опухоли является нерегулируемый рост, а остальные свойства: скорость роста, инвазивность опухоли, метастазирование и т.д., это «вторичные» свойства или признаки, которые как раз и изменяются в ходе прогрессии.

Трансформации нормальных клеток в опухолевые, промо­ции и опухолевой прогрессии способствуют ряд факторов: сни­жение антибластомной резистентности и противоопухолевого иммунитета (иммунодепрессия, иммунодефицит), ослабление «кейлонного надзора» за опухолью, эндокринный дисбаланс, гормонально-метаболические нарушения и др.

Опухолевый атипизм

Для опухолей характерен атипизм - отличия опухолевых клеток от нормальных. Он проявляется в относительной авто­номности роста, особенностях размножения, дифференцировки, метаболизма, структуры, функции и антигенного набора опухолевых клеток.

1. Одной из причин относительной автономности рос­та опухоли, увеличения ее массы является усиленная экспрес­сия канцерогенами ряда протоонкогенов (гомологов онкогенов ретровирусов), кодирующих синтез опухолевой клеткой онкопродуктов, которые нередко гомологичны факторам роста, их рецепторам и белкам, участвующим в пострецепторной пере­даче митогенного сигнала. Опухолевые клетки обладают спо­собностью продуцировать собственные факторы роста путем так называемой аутокринной секреции. Это α- и β-трансформирующие факторы, эпидермальный фактор роста, инсулиноподобные факторы роста I и II.

Эти факторы или регуляторные пептиды, продуцируемые самой опухолевой клеткой, обеспечивают утилизацию энерге­тических и пластических субстратов из окружающей среды и включают механизмы деления опухолевой клетки. Продуци­руемые опухолью ростовые факторы стимулируют последую­щий рост массы опухоли и снижают потребность новообразо­вания в экзогенных факторах роста. Полагают, что именно аутокрииная секреция факторов роста лежит в основе относи­тельной автономности опухоли, ее независимости от регуляторных внешних факторов.

2. Метаболический и энергетический атипизм. До на­стоящего времени не удалось выявить качественных измене­ний метаболизма опухолевых клеток, которые отличали бы их от нормальных. Все обнаруженные изменения в опухолевых клетках носят количественный характер и касаются изменений концентрации соединений, активности ферментов, размера транспорта метаболитов и других величин. Эти изменения ме­таболизма опухолевых клеток являются следствием наруше­ния регуляторных процессов в них, причем величина измене­ний метаболизма прямо связана со скоростью роста опухоли.

Особенности метаболизма углеводов. Типичным для опу­холевых клеток является анаэробный гликолиз - расщепле­ние глюкозы до лактата в присутствии кислорода. Причиной активации анаэробного гликолиза считается недостаток коферментов, особенно НАД, КоА-SН и тиаминпирофосфата, что препятствует аэробному распаду глюкозы в опухолевой клет­ке. Весьма характерно, что распад углеводов до пирувата и его превращение в лактат происходит в присутствии кислорода (этот феномен получил название отрицательного эффекта Пастера). Если имеется недостаток глюкозы (главного энергети­ческого субстрата опухолевых клеток), о чем свидетельствует гипогликемия, встречающаяся при разнообразных опухолях, то они способны окислять и другие субстраты.

Наиболее часто гипогликемия является следствием про­дукции инсулиноподобных факторов роста (ИФР-1 и ИФР-II) самой опухолью. Гены инсулина кодируют образование проинсулина (неактивный предшественник инсулина), струк­тура которого сходна с двумя инсулиноподобными факторами роста, которые образуются в печени. Наибольшая концентра­ция ИФР-1 выявлена в печени, нервной системе, глазу, лег­ких, сердце, скелетных мышцах, яичках, тимусе, лимфоузлах, жировой ткани, поджелудочной железе.

Кроме того, причинами паранеопластической гипоглике­мии могут быть: повышенная продукция соматостатина и ин­гибиторов инсулиназы, торможение гликогенолиза в печени, блокирование глюконеогенеза и повышенное потребление глю­козы опухолью.

Для опухолевых клеток характерно низкое содержание ми­тохондрий, что уменьшает интенсивность тканевого дыхания и изменяет способ ресинтеза АТФ, а именно: увеличивается доля АТФ, образуемой в ходе гликолиза и уменьшается доля АТФ, синтезируемая в процессе тканевого дыхания. Общая продукция АТФ в опухолевой клетке снижена по сравнению с нормальной.

Усиление гликолиза в опухолевых клетках обусловливает их высокую выживаемость в условиях гипоксии.

С увеличением размеров опухоли прогрессивно ухудшается ее васкуляризация, что также усиливает анаэробный гликолиз. В опухо­левых клетках активируется обмен глюкозы по пентозофосфатному шунту через аэробную (при участии глюкозо-6-фосфатдегилрогеназы) и анаэробную (при участии трансальдолазы и транскетолазы) ветви этого процесса, что обеспечивает повышенную продукцию рибозо-5-фосфата как основного про­дукта для синтеза нуклеотидов и нуклеиновых кислот.

В опухолевых клетках в несколько раз увеличивается ак­тивность гексокиназы, фосфофруктокиназы и пируваткиназы - гликолитических ферментов (в итоге накапливаются недоокисленные продукты), а активность ферментов глюконеогенеза (глюкозо-6-фосфатаза, фруктозо-1,6-дифосфатаза, фосфоенолнируваткарбоксилаза и пируваткарбоксилаза) несколько снижена. И тем не менее, глюконеогенез в опухолевых клет­ках протекает с большей скоростью, чем в нормальных. Суб­стратом для этого процесса являются аминокислоты. Следует отметить, что ферменты глюконеогенеза обладают большим сродством к субстратам и хуже поддаются гормональной ре­гуляции.

Для злокачественного роста типичным является снижен­ный ответ гликемии на инсулин и сниженная в соответствии с этим толерантность к глюкозе. Учитывая, что синтез и вы­свобождение инсулина из клеток поджелудочной железы при опухолевом росте не меняется, нарушение следует искать на уровне рецепторов клеточных мембран.

Особенности белкового метаболизма. Обмен белков нару­шается не только в опухолевых клетках, но и в организме, по­раженном злокачественным ростом. На уровне опухолевых кле­ток интенсифицируется синтез онкобелков («опухолеродных» или «опухолевых» белков), которые обусловливают появление у опухолевых клеток характерных биологических свойств: бес­контрольность деления, утрата лимита Хейфлика, иммортализация (бессмертие) др.

Синтез онкобелков программируется активными клеточными онкогенами и в очень малых количе­ствах - их неактивными предшественниками, именуемыми протоонкогенами. Активные онкогены выявляются только в опухолевых клетках, а протоонкогены - во всех нормальных клетках. В опухолевых клетках отмечается уменьшение синте­за и содержания гистонов - белков-супрессоров синтеза ДНК.

На увеличение скорости белкового синтеза в опухолевых клетках влияет повышенная проницаемость цитоплазматических мембран для некоторых ключевых субстратов этого про­цесса. Опухолевые клетки представляются «пастью, откры­той для белков». Они изымают необходимые, незаменимые аминокислоты из крови без какой-либо регулировки этого про­цесса, влияя тем самым на состояние здоровых клеток. Резуль­татом этого становится не только быстрый рост опухолевых клеток, но и отрицательный азотистый баланс организма, что, как правило, сопровождается быстрым снижением массы тела и развитием кахексии. Кроме того, угнетаются процессы дезаминирования и переаминирования.

Изменения белкового состава крови у лиц с опухолевым процессом можно разделить на 2 группы:

1. Изменение количественного соотношения естественных белков плазмы крови.

2. Появление белков новых типов, связанных с возникно­вением или течением опухолевого роста.

Снижается синтез и концентрация сывороточного альбу­мина и повышается синтез α 1 ,α 2 и β- глобулинов. Прежде все­го, это относится к α 1 - гликопротеиду, α 1 -антитрипсину, церулоплазмину и трансферрину, в увеличении содержания кото­рых в сыворотке крови существенную роль играют внутрикле­точные гидролазы, освобождающиеся, при распаде опухолевых и неопухолевых клеток.

Развитие злокачественного роста в некоторых органах со­провождается появлением белков, синтез которых имел место только в эмбриональном периоде: альфа-фетопротеин, канцероэмбриональный антиген и хорионгонадотропин. Альфа-фе­топротеин синтезируется эмбриональными гепатоцитами и на­ходится в сыворотке эмбриона. В сыворотке крови взрослого человека этот белок обнаруживается при гепатоцеллюлярном раке печени, тератобластоме яичка и яичника. Он способен специфически связывать стероидные гормоны и один из изоферментов щелочной фосфатазы.

Повышенное содержание хорионгонадотропина отмечается во время беременности, но ес­ли его содержание возрастает без беременности, то следует ис­кать трофобластические опухоли.

Наиболее изученным при канцерогенезе и развитии опу­холи оказался метаболизм нуклеотидов и нуклеиновых кислот . Установлено, что одним из первых проявлений злокаче­ственной трансформации является экспрессия генов, ответст­венных за кодирование ключевых ферментов анаболических и катаболических процессов. При этом вначале значительно по­вышается активность ферментов, участвующих в анаболичес­ких процессах, поэтому в опухолевых клетках повышается син­тез нуклеиновых кислот, отмечается их избыточное накопле­ние, что характерно для злокачественного роста. Активность ферментов, участвующих в катаболических процессах, вначале опухолевого роста снижается (а в организме повышаются, и усиливаются катаболические процессы), а затем повышается.

Особенности метаболизма липидов. В организме, поражен­ном злокачественным ростом, липиды выполняют роль источ­ника энергии и субстратов для образования сложных липидов, участвующих в построении и в обмене фосфолипидов цитоплазматических мембран. В первом случае в метаболизме не наблюдается никаких отклонений: липолиз происходит обыч­ными путями и регулируется гормонами, но постепенно запа­сы нейтрального жира иссякают. Поскольку при этом не от­мечается как правило повышения в крови кетоновых тел, мож­но полагать, что процесс их распада является аэробным.

Структурные липиды, фосфолипиды, образующие цитоплазматические мембраны в опухолевых клетках, по своему качественному составу принципиально не отличаются от та­ковых и в нормальных клетках. Отмечается лишь некоторое упрощение их полисахарид кого компонента. Обнаруживаются также количественное различие в представительстве отдель­ных видов фосфолипидов, входящих в мембраны различных опухолевых клеток.

Общее содержание фосфолипидов в опухолевых клетках повышено, ускорен их метаболический оборот. Это связано с быстрым синтезом и делением клеток, для которого необходи­мым условием является быстрый синтез липидных компонен­тов мембран. Отсюда и ускоренный метаболизм липидов в микросомальной фракции, где их молекулы и образуются. Ана­логично изменяется синтез холестерина.

Весьма характерен для опухолей феномен «субстратных ловушек». Он заключается в усиленном захвате и использова­нии субстратов для энергообразования (глюкозы), для постро­ения цитоплазмы (аминокислот - отсюда «ловушка азота») клеточных мембран (холестерина), для защиты от свободных радикалов и стабилизации мембран (антиоксидант α-токоферол). Эта особенность повышает выживаемость опухолевых клеток при контакте их с нормальными клетками в условиях инвазивного роста и метастазирования.

3. Физико-химический атипизм проявляется увеличени­ем содержания в опухолевых клетках воды и некоторых элек­тролитов. Увеличение содержания воды облегчает диффузию субстратов метаболизма внутрь клетки и его продуктов нару­жу. Далее, в опухолях в пересчете на сухую массу или на бел­ковый азот повышается содержание ионов натрия и кальция (в опухолевой клетке), в меньшей степени - калия и значи­тельно снижается концентрация магния.

Увеличение содержания калия в опухолевой клетке пре­пятствует в определенной мере развитию внутриклеточного ацидоза в связи с усилением гликолиза и накоплением молоч­ной кислоты. Концентрация ионов водорода увеличивается в периферической, растущей зоне опухоли благодаря интенсив­ному гликолизу и уменьшается в некротизирующейся зоне, обычно расположенной центрально, благодаря выходу из рас­падающихся структур опухолевых клеток больших количеств калия и белка.

В организме-носителе опухоли отмечается тенденция к развитию алкалоза. Полагают, что механизм его развития свя­зан с компенсаторным перераспределением (в ответ на резорб­цию из опухоли в кровь лактата) щелочных катионов из тка­ней в кровь.

В некротически измененной опухоли высвобождаются жирные кислоты, которые связываются с ионами кальция, об­разуя соли (мыла) и тем самым способствуют увеличению ио­нов кальция в опухолевой ткани. Снижение ионов калия ха­рактерно для опухолей, отличающихся высокой продукцией муцинов (например, аденокарцинома яичников), которые свя­зывают ионы калия. При быстрой потере массы тела и при раз­витии кахексии вследствие разрушения большого количества клеточных структур калия много выделяется с мочой.

Изменения концентрации кальция обычно вторичны и со­провождают опухоли эндокринных желез или метастазы в ко­сти. Часто отмечается недостаточность железа, что играет важ­ную роль в возникновении железодефицитной анемии.

Повышается величина отрицательного заряда поверхности опухолевых клеток вследствие накопления на ней анионов нейраминовой кислоты, что способствует увеличению их вза­имного отталкивания и проникновению по межклеточным щелям в нормальные ткани. Повышается также электропровод­ность и снижается вязкость клеточных коллоидов.

В последние годы установлено, что опухолевые клетки из­лучают митогенетические лучи - ультрафиолетовые лучи с длиной волны 190-325 нм. Они генерируются всеми клетка­ми, но наиболее интенсивно - делящимися. Эти лучи способ­ны стимулировать деление соседних клеток. Они были откры­ты А.Г. Гурвичем и получили название митогенетических лу­чей Гурвича. В крови животных, страдающих опухолями, об­наруживаются вещества, ингибирующие митогенетическое из­лучение опухолевых клеток. Их назвали тушителями митоге­нетических лучей.

4. Морфологический атипизм делят на тканевой и кле­точный. Тканевой атипизм сам по себе, без клеточного атипизма, характерен только для доброкачественных опухолей и заключается в нарушении нормального соотношения тканевых структур, в неравномерности волокнистых или мышечных пуч­ков, в образовании неправильных и неравномерных железис­тых ходов, в отсутствии выводных протоков у опухолей желе­зистого характера.

Клеточный атипизм. Опухолевая клетка сама по себе не несет черт специфичности, но по совокупности структурно-функциональных качеств она отличается от нормальной клет­ки организма, т.е. она атипична. Морфологическая атипия опу­холи может выражаться в нарушении органотипической, гистотипической и цитотипической дифференцировки.

Для доброкачественных опухолей характерны два первых признака; для злокачественных опухолей характерным явля­ется в первую очередь нарушение цитотипической дифферен­цировки, отражающее появление опухолевого роста на уровне клетки и ее органоидов. На светооптическом уровне морфоло­гические признаки атипии клеток выражаются в их полимор­физме или мономорфизме. Полиморфизм касается ядер, ядры­шек. Выявляется гиперхроматоз ядер, «комковатый» хрома­тин, полиплоидия, нарушение ядерно-цитоплазматического индекса (из-за укрупнения ядра), обилие митозов с преобла­данием среди них патологических.

Наряду с атипией, проявляющейся дедифференцировкой, анаплазией, катаплазией, отмечаются признаки дифференци­ровки опухолевых клеток с образованием в них специфичес­ких структур. Дифференцировка опухолевых клеток всегда не­полная, атипичная и афункциональная, но продукты дифференцировки позволяют установить тканевую принадлежность опухоли, а нередко - и ее гистогенез.

Дифференцировка вы­ражается не только в появлении структур, характерных для нормальных клеток данной ткани и органа. Она сопровожда­ется изменениями функции клеток и проявляется в форме вы­работки специфических структурных белков (коллагена, мио­зина), секретов (слизи), гормонов (паратгормон, глюкагон), изменений активности ферментов (фосфорилазы) и др.

Ультраструктура опухолевой клетки. Специфических электронно-микроскопических изменений, характерных для опухолевых клеток, не обнаружено. Описываемая обычно дез­организация цитоплазмы, преобладание в ней свободных ри­босом, увеличение ядра, инвагинация ядерной оболочки и из­менения митохондрий встречаются далеко не во всех опухо­лях, а если и выявляются, то далеко не во всех клетках дан­ной опухоли. Все это свидетельствует, по мнению академика Д.С. Саркисова, о том, что опухолевая клетка совершает не «шаг назад», а «шаг в сторону», что Р.Вепеке назвал «катаплазией».

Катаплазия (приставка «ката» означает движение вниз) - появление слабодифференцированных или недиффе­ренцированных клеток, похожих на эмбриональные. Опухоль может утрачивать частично или полностью тканеспецифпчес-кие признаки.

Было бы принципиальной ошибкой пытаться описать уль­траструктурную организацию опухолевой клетки вообще, т.е. какой-то средней, единой для всех опухолей клетки. И тем не менее выделяют 2 особенности опухолевых клеток: ультраст­руктурную органоспецифичность и ультраструктурный поли­морфизм. Крайне редко опухоли имеют мономорфную ультра­структуру. Они весьма разнообразны - в одной и той же опу­холи встречаются клетки, находящиеся на разных уровнях дифференцировки и функционального созревания. Вот поэто­му-то в опухолях можно выявить 2 группы клеток:

5. Антигенный атипизм опухоли состоит в разнонаправ­ленных изменениях антигенного состава ее клеток: антигеном упрощении и появлении новых антигенов. Под антиген­ным упрощением понимают утрату опухолевыми клетками ан­тигенов, имеющихся в исходно нормальных клетках. В опухолевых клетках появляются новые, отсутствовавшие в нормаль­ных клетках, антигены. Существует две гипотезы, объясняю­щие возникновение новых антигенов в опухолевых клетках:

а) новые антигены (неоантигены) возникают вследствие соматической мутации генома клетки;

б) новые антигены являются результатом реактивации гех участков генома, которые в ходе развития (дифференцировки) были ингибированы.

Как известно, большинство клеточных антигенов локали­зуется в цитоплазматической мембране и имеет природу инте­гральных белков. Обычно, это гликопротеиды, проникающие через всю толщу мембраны, а на поверхности оканчивающие­ся цепью или цепями олигосахаридов. Именно эти олигосахариды принимают участие в обеспечении таких жизненно важ­ный функций, как адгезия, контактное инициирование и отли­чие своих белков от чужих.

При злокачественной трансформации может происходить отщепление выступающих над поверхностью опухолевой клет­ки антигенных структур под влиянием протеаз, и тогда на по­верхность выходят детерминантные группы, локализующиеся глубже - криптоантигены. Кроме того, выявляется обеднение поверхностных углеводных структур трансформированных клеток. Такая упрощенная поверхностная структура менее все­го способна различать другие подобные обедненные структу­ры. Это приводит к утрате контактного торможения (ингибирования), суть которого заключается в том. что клетки, входя в контакт с клетками того же вида, перестают делиться.

В зоне злокачественного перерождения па поверхности клеток не только возникают новые антигены; но одновремен­но с этим идет процесс исчезновения некоторых, ранее при­сутствовавших поверхностных антигенов. Они могут попадать в кровь, и это будет иметь большое значение для диагностики опухолей. Из типично опухолевых антигенов, освобождающих­ся с поверхности клетки и выходящих в кровь, с диагностиче­ской целью можно использовать такие антигены, как:

- α 1 -фетопротеин. Это гликопротеин (м.м. около 70 кД), образующийся в печени эмбриона. Его синтез прекращается после рождения и содержание его в крови находится на столь низких величинах, что можно обнаружить только радиоиммунным методом. Повышение его содержания характерно для ра­ка печени, а также для тератом различной природы и локали­зации;

Канцероэмбриональный антиген. Это также гликопротеид (м.м. 180-200 кД); выделено 3 различных вида данного ан­тигена. В физиологических условиях он имеется в клетках сли­зистой пищеварительного тракта и с их поверхности постоян­но выделяется в просвет кишечника. В крови его очень мало (следы) и он выявляется иммунохимически. Концентрация этого антигена в крови возрастает при раке прямой кишки, толстого кишечника, печени, бронхов, доброкачественных по­липах кишечника, язвенном колите. Содержание этого антиге­на может быть также повышено и при всех состояниях, кото­рые сопровождаются повышенной секрецией слизи: хроничес­кий бронхит, при курении.

Утрата опухолевыми клетками одних антигенов (органоспецифических) и появление в них эмбриональных антигенов (к которым не образуются антитела, поскольку они восприни­маются иммунной системой как свои) способствует «антиген­ной маскировке» опухолевых клеток и «неузнаваемости» их иммунной системой.

Кроме того, опухолевые клетки несут на своей поверхнос­ти туморассоциированные трансплантационные антигены - ТАТА. Именно эти антигены вызывают каскад реакций им­мунной системы, результатом которых является торможение роста опухоли или цитолиз трансформированных клеток.

Канцерогенез – это длительный многоэтапный процесс возникновения и развития опухоли, индуцированный воздействием канцерогенов. Предполагается, что любая опухоль развивается из единичной клетки (клоновая теория), которая в процессе малигнизации подвергается последовательной трансформации.

1 стадия канцерогенеза – инициация.

Суть этой стадии заключается в том, что происходят необратимые нарушения генотипа нормальной клетки и она переходит в состояние, предрасположенное к трансформации. В основе инициации лежит взаимодействие канцерогена с клеточной ДНК, в результате которого происходит активация протоонкогена и превращение его в онкоген. Активированные онкогены начинают продуцировать онкобелки, которые различными способами блокируют регулирующие факторы пролиферативной активности. Вследствие этого у клетки появляется основной признак злокачественности – неконтролируемое организмом размножение (деление), то.есть автономность роста.

Следовательно, в стадию инициации предопухолевая (еще латентная) клетка приобретает следующие наследственно закрепленные свойства:

1. иммортальность – способность к неограниченному размножению

2. блокировка терминальной стадии дифференцировки клетки

3. способность к промоции.

2 стадия канцерогенеза – промоция

Инициированная клетка под воздействием определенных факторов‑промоторов начинает быстро размножаться, образуя колонию клеток (опухоль).

Характерная особенность влияния промоторов:

1. реализация их возможна только при длительном воздействии;

2. прекращение действия промотора на определенном этапе может привести к обратимости процесса канцерогенеза.

В качестве промоторов могут быть химические соединения как экзогенной, так и эндогенной Природы (гормоны, желчные кислоты, биологически активные пептиды и т. д.). Отмечается определенная органотропность промоторов. Так, специфическим промотором гепатоканцерогенеза является фенобарбитал, рака кожи – форболовые эфиры: опухолей молочной железы, матки – эстрогены и т. д.

Сущность промоторных изменений заключается в реализаций потенций малигнизированных (латентных) клеток (инактивация генов‑супрессоров).

Таким образом, промоция – это процесс закрепления возникших генетических нарушений в новых поколениях клеток.

3 стадия ‑ прогрессия опухоли.

Прогрессия опухали – это качественные изменения структуры и функции опухолевой ткани, приводящие к увеличению различий между ней и исходной нормальной тканью.

В процессе роста и развития опухоли она приобретает более злокачественный характер: снижается дифференцировка, упрощаются функции и антигенная структура, повышается активность к метастазированию.

Факторами, способствующими профессии опухоли, могут быть воздействия токсических веществ, гормонов, инфекции, в том числе вирусной природы, нарушения метаболизма, иммунологического контроля и др.

В основе прогрессии опухоли лежит явление гетерогенизации, то есть способность злокачественных клеток к изменчивости и образованию различных клеточных вариантов – одно из коварных свойств опухоли. Поэтому рак, развившийся из одной малигнизированной клетки, ко времени клинического проявления представляет собой сложную популяцию фенотипически и генетически гетерогенных клеток. В связи с этим популяции злокачественных клеток одной и той же опухоли различаются по метастатическому потенциалу, радиорезистентности, чувствительности к противоопухолевым препаратам и т. д., что создает значительные трудности в лечении подобных пациентов и существенно снижает эффективность его.

Первая стадия опухолевого роста называется (1)

Стадии канцерогенеза (3)

К физическим канцерогенам относятся (4)

Создателем вирусо-генетической теории возникновения опухолей является (1)

У человека вирусное происхождение имеют (2)

Впервые доказал в эксперименте роль вирусов в этиологии опухолей (1)

Для эндогенных канцерогенов характерно (3)

К эндогенным химическим канцерогенам относятся (3)

Возможность образования эндогенных канцерогенов впервые доказал (1)

Нитрозамины (2)

К нитрозаминам относятся (2)

Аминоазосоединения (4)

a) обладают местным действием

b) обладают органотропностью+

c) вызывают рак мочевого пузыря, печени+

d) входят в состав анилиновых красителей+

e) входят в состав некоторых пищевых красителей+

a) диэтилнитрозамин +

b) метилнитрозомочевина +

c) 3,4-бензпирен

d) метилхолантрен

e) анилиновые красители

a) обладают органотропностью+

b) могут синтезироваться в желудке из нитратов и аминов в присутствии соляной кислоты+

c) обладают местным действием

d) входят в состав анилиновых красителей

b) Ямагива

c) Ишикава

d) Л.М.Шабад +

e) Л.А.Зильбер

a) полициклические ароматические углеводороды

b) метаболиты триптофана и тирозина +

c) производные холестерина +

d) нитрозамины

e) простые химические соединения

f) свободные радикалы и оксид азота +

a) образуются в организме +

b) обладают слабым канцерогенным действием +

c) имеют длительный латентный период +

d) обладают сильным канцерогенным действием

e) имеют короткий латентный период

b) Ямагива

c) Ишикава

d) Л.М.Шабад

e) Л.А.Зильбер

37. Найти соответствие:

a) вирусы молока Битнера, лейкоза кур, мышей 1

b) вирусы группы Папова 2

c) вирус Эпштейна-Барр 2

d) вирусы саркомы Роуса1

e) вирус HTLV-1 1

f) вирус папилломы 2

g) вирус гепатита В 2

a) лимфома Беркитта+

b) миелолейкоз

c) ретинобластома

d) Т-клеточный лейкоз+

e) пигментная ксеродерма

a) Л.М.Шабад

b) Л.А.Зильбер+

c) Ямагива

d) Ишикава

a) альфа-, бета излучение+

b) гамма-излучение+

c) ультрафиолетовые лучи+

d) рентгеновское излучение+

e) инфракрасные лучи

a) инициация+

b) прогрессия+

c) промоция+

d) регрессия

e) метастазирование

a) промоцией

b) коканцерогенезом

c) прогрессией

d) инициацией+

e) проканцерогенезом



a) промоцией+

b) коканцерогенезом

c) прогрессией

d) инициацией

e) проканцерогенезом

44. Найти соответствие:

1. Инициация

2. Промоция

3. Прогрессия

a) трансформация нормальной клетки в опухолевую1

b) размножение трансформированных опухолевых клеток2

c) нарастание злокачественных свойств опухоли3