Базальные ядра полушарий большого мозга связаны. Хвостатое ядро чечевицеобразное ядро

Функции базальных ядер

Основные структуры базальных ядер (рис. 66). Базальные ядра - это хвостатое ядро (nucleus caudatus ), скорлупа (putamen ) и бледный шар (globulus pallidus ); некоторые авторы относят к базальным ядрам ограду (claustrum ). Все эти четыре ядра называют полосатым телом (corpus striatum ). Выделяют также стриатум (striatum ) - это хвостатое ядро и скорлупа. Бледный шар и скорлупа образуют чечевицеобразное ядро (nukleus lentioris ). Стриатум и бледный шар образуют стриопаллидарную систему.

Рис. 66. А - Расположение базальных ганглиев в объеме головного мозга. Базальные ганглии закрашены в красный цвет, таламус – серый цвет, а остальная часть мозга не закрашена. 1 – Бледный шар, 2 – Таламус, 3 – Скорлупа, 4 – Хвостатое ядро, 5 – Миндалевидное тело (Астапова, 2004). Б – Трехмерное изображение расположения базальных ганглиев в объеме головного мозга (Гайтон, 2008)

Функциональные связи базальных ядер. У базальных ядер нет входа от спинного мозга, но есть прямой вход от коры больших полушарий .

Базальные ядра участвуют в выполнении двигательных функций, эмоциональных и познавательных (когнитивных) функций .

Возбуждающие пути идут, в основном, к стриатуму: от всех областей коры большого мозга (прямо и через таламус), от неспецифических ядер таламуса, от черного вещества (средний мозг)) (рис. 67).

Рис. 67. Связь контура базальных ганглиев с кортикоспиномозжечковой системой для регуляции двигательной активности (Гайтон, 2008)

Сам стриатум оказывает в основном тормозное и, частично, возбуждающее влияние на бледный шар. От бледного шара идет самый важный путь в двигательные вентральные ядра таламуса, от них возбуждающий путь идет в двигательную кору большого мозга. Часть волокон от стриатума идет в мозжечок и к центрам ствола мозга (РФ, красное ядро и далее - в спинной мозг.

Тормозящие пути от стриатума идут к черному веществу и после переключения - к ядрам таламуса (рис. 68).

Рис. 68. Нервные пути, секретирующие различные типы нейромедиаторов в базальных ганглиях. Ах – ацетилхолин; ГАМК – гамма-аминомасляная кислота (Гайтон, 2008)

Двигательные функции базальных ядер. В целом базальные ядра, имея двусторонние связи с корой большого мозга, таламусом, ядрами ствола мозга, участвуют в создании программ целенаправленных движений с учетом доминирующей мотивации. При этом нейроны стриатума оказывают тормозное влияние (медиатор - ГАМК) на нейроны черного вещества. В свою очередь, нейроны черного вещества (медиатор - дофамин) оказывают модулирующее влияние (тормозное и возбуждающее) на фоновую активность нейронов стриатума. При нарушении дофаминергических влияний на базальные ядра наблюдаются двигательные расстройства типа паркинсонизма, при которых резко падает концентрация дофамина в обоих ядрах стриатума. Наиболее важные функции базальных ядер выполняют стриатум и бледный шар.

Функции стриатума . Участвует в осуществлении поворота головы и туловища и ходьбы по кругу , которые входят в структуру ориентировочного поведения. Поражение хвостатого ядра при заболеваниях и при разрушении в эксперименте ведет к насильственным, избыточным движениям (гиперкинезы: хорея и атетоз).

Функции бледного шара . Оказывает модулирующее влияние на двигательную кору, мозжечок, РФ, красное ядро. При стимуляции бледного шара у животных преобладают элементарные двигательные реакции в виде сокращения мышц конечностей, шеи и лица, активация пищевого поведения. Разрушение бледного шара сопровождается снижением двигательной активности - возникает адинамия (бледность двигательных реакций), а также ему (разрушению) сопутствует развитие сонливости, «эмоциональной тупости», что затрудняет осуществление имеющихся условных рефлексов и ухудшает выработку новых (ухудшает кратковременную память).

Базальные (подкорковые) ядра (nuclei basales) головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро (nucleus caudatus), скорлупу (putamen), ограду (claustrum), бледный шар (globus pallidus).

Хвостатое ядро. Скорлупа

Хвостатое ядро (nucleus caudatus) и скорлупа (putamen) являются эволюционно более поздними, чем бледный шар, образованиями и функционально оказывают на него тормозящее влияние.

Хвостатое ядро и скорлупа имеют сходное гистологическое стро­ение. Их нейроны относятся ко II типу клеток Гольджи, т. е. имеют короткие дендриты, тонкий аксон; их размер до 20 мк. Этих нейронов в 20 раз больше, чем нейронов Гольджи I типа, имеющих развет­вленную сеть дендритов и размер около 50 мк.

Функции любых образований головного мозга определяются прежде всего их связями, которых у базальных ядер достаточно много. Эти связи имеют четкую направленность и функциональную очерченность.

Хвостатое ядро и скорлупа получают нисходящие связи преиму­щественно от экстрапирамидной коры через подмозолистый пучок. Другие поля коры большого мозга также посылают большое коли­чество аксонов к хвостатому ядру и скорлупе.

Основная часть аксонов хвостатого ядра и скорлупы идет к бледному шару, отсюда - к таламусу и только от него - к сенсорным полям. Следовательно, между этими образованиями име­ется замкнутый круг связей. Хвостатое ядро и скорлупа имеют также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, люисовым телом, ядрами преддверия, мозжечком, γ -клетками спинного мозга.

Обилие и характер связей хвостатого ядра и скорлупы свиде­тельствуют об их участии в интегративных процессах, организации и регуляции движений, регуляции работы вегетативных органов.

Раздражение поля 8 коры большого мозга вызывает возбуждение нейронов хвостатого ядра, а поля 6 - возбуждение нейронов хво­статого ядра и скорлупы. Одиночное раздражение сенсомоторной области коры большого мозга может вызывать возбуждение или торможение активности нейронов хвостатого ядра. Эти реакции возникают через 10-20 мс, что свидетельствует о прямых и опос­редованных связях коры большого мозга с хвостатым ядром.

Медиальные ядра таламуса имеют прямые связи с хвостатым ядром, свидетельством чего служит реакция его нейронов, насту­пающая через 2-4 мс после раздражения таламуса.

Реакцию нейронов хвостатого ядра вызывают раздражения кожи, световые, звуковые стимулы.

Во взаимодействиях хвостатого ядра и бледного шара прева­лируют тормозные влияния. Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, а меньшая возбуждается. В случае повреждения хвостатого ядра у животного появляется двигательная гиперактивность.


Взаимодействие черного вещества и хвостатого ядра основано на прямых и обратных связях между ними. Установлено, что сти­муляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а разрушение - к уменьшению количества дофамина в хвостатом ядре. Установлено, что дофамин синтезируется в клетках черного вещества, а затем со скоростью 0,8 мм/ч транспортируется к си­напсам нейронов хвостатого ядра. В хвостатом ядре в 1 г нервной ткани накапливается до 10 мкг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, бледном шаре, в 19 раз больше, чем в мозжечке. Благодаря дофамину проявляется растормажива­ющий механизм взаимодействия хвостатого ядра и бледного шара.

При недостатке дофамина в хвостатом ядре (например, при дисфункции черного вещества) бледный шар растормаживается, ак­тивизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц.

Кортико-стриарные связи топически локализованы. Так, пе­редние области мозга связаны с головкой хвостатого ядра. Пато­логия, возникающая в одной из взаимосвязанных областей кора - хвостатое ядро, функционально компенсируется сохранившейся структурой.

Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность. Это выявляется при стимуляции хвостатого ядра, скорлупы и бледного шара, деструкции и при регистрации электрической активности.

Прямое раздражение некоторых зон хвостатого ядра вызывает поворот головы в сторону, противоположную раздражаемому полу­шарию, животное начинает двигаться по кругу, т. е. возникает так называемая циркуляторная реакция.

Раздражение других областей хвостатого ядра и скорлупы вы­зывает прекращение всех видов активности человека или животного: ориентировочной, эмоциональной, двигательной, пищевой. При этом в коре большого мозга наблюдается медленноволновая активность.

У человека стимуляция хвостатого ядра во время нейрохирур­гической операции нарушает речевой контакт с больным: если боль­ной что-то говорил, то он замолкает, а после прекращения раздра­жения не помнит, что к нему обращались. В случаях травм головного мозга с раздражением головки хвостатого ядра у больных отмечается ретро-, антеро- или ретроантероградная амнезия.

У таких животных, как обезьяны, раздражения хвостатого ядра на разных этапах реализации условного рефлекса приводят к тор­можению выполнения данного рефлекса. Например, если у обезьяны через вживленные электроды раздражать хвостатое ядро перед по­дачей условного сигнала, то обезьяна не реагирует на сигнал, как будто не слышала его; раздражение ядра после того, как обезьяна на сигнал направляется к кормушке или уже начинает брать пищу из кормушки, приводит к остановке животного, после прекращения раздражения обезьяна, не завершив условной реакции, возвращается на место, т. е. она «забывает», что был раздражающий сигнал (ре­троградная амнезия).

Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стимуляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной - повышает слюноотделение.

При стимуляции хвостатого ядра удлиняются латентные периоды рефлексов, нарушается переделка условных рефлексов. Выработка условных рефлексов на фоне стимуляции хвостатого ядра становится невозможной. Видимо, это объясняется тем, что стимуляция хво­статого ядра вызывает торможение активности коры большого мозга.

Ряд подкорковых структур также получает тормозное влияние хвостатого ядра. Так, стимуляция хвостатых ядер вызывала вере­тенообразную активность в зрительном бугре, бледном шаре, субталамическом теле, черном веществе и др.

Таким образом, специфичным для раздражения хвостатого ядра является преимущественно торможение активности коры боль­шого мозга, подкорковых образований, торможение безусловного и условнорефлекторного поведения.

В то же время при раздражении хвостатого ядра могут появляться некоторые виды изолированных движений. Видимо, хвостатое ядро имеет наряду с тормозящими и возбуждающие структуры.

Выключение хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, ате­тоза, торсионного спазма, хореи (подергивания конечностей; туло­вища, как при некоординированном танце), двигательной гиперак­тивности в форме бесцельного перемещения с места на место.

В случае повреждения хвостатого ядра наблюдаются сущест­венные расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра ус­ловные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, общее поведение отличается застойностью, инертностью, трудностью переключений. У обезьян после односто­роннего повреждения хвостатого ядра условная реакция восстанав­ливалась через 30-50 дней, латентные периоды рефлексов удли­нялись, появлялись межсигнальные реакции. Двустороннее повреж­дение приводило к полному торможению условных рефлексов. Видимо, двустороннее повреждение истощает симметричные ком­пенсаторные механизмы.

При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения. Многие авторы отмечают, что у разных животных при двустороннем по­вреждении полосатого тела появляется безудержное стремление дви­гаться вперед, при одностороннем - возникают манежные движения.

Несмотря на большое функциональное сходство хвостатого ядра и скорлупы, имеется ряд функций, специфичных для последней.

Эволюционно скорлупа появляется раньше хвостатого ядра (ее зачатки есть уже у рыб).

Для скорлупы характерно участие в организации пищевого по­ведения: пищепоиска, пищенаправленности, пищезахвата и пищевладения; ряд трофических нарушений кожи, внутренних органов (например, гепатолентикулярная дегенерация) возникает при нарушениях функции скорлупы. Раздражения скорлупы приводят к из­менениям дыхания, слюноотделения.

Как упоминалось ранее, раздражение хвостатого ядра тормозит условный рефлекс на всех этапах его реализации. В то же время раздражение хвостатого ядра препятствует угашению условного ре­флекса, т. е. развитию торможения; животное перестает восприни­мать новую обстановку. Учитывая, что стимуляция хвостатого ядра приводит к торможению условного рефлекса, следовало бы ожидать, что разрушение хвостатого ядра вызовет облегчение условнорефлекторной деятельности. Но оказалось, что разрушение хвостатого ядра также приводит к торможению условнорефлекторной деятель­ности. Видимо, функция хвостатого ядра не является просто тор­мозной, а заключается в корреляции и интеграции процессов опе­ративной памяти. Это подтверждается также тем, что на нейронах хвостатого ядра конвергирует информация различных сенсорных систем, так как большая часть этих нейронов полисенсорна.

Бледный шар

Бледный шар (globus pallidus s. pallidum) имеет преимущественно крупные нейроны Гольджи I типа. Связи бледного шара с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, соматосенсорной системой и др. свидетельствуют об его участии в организации простых и сложных форм поведения.

Раздражение бледного шара с помощью вживленных электродов вызывает сокращение мышц конечностей, активацию или торможе­ние γ-мотонейронов спинного мозга. У больных с гиперкинезами раздражение разных отделов бледного шара (в зависимости от места и частоты раздражения) увеличивало или снижало гиперкинез.

Стимуляция бледного шара в отличие от стимуляции хвостатого ядра не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание и т.д.).

Повреждение бледного шара вызывает у людей гипомимию, маскообразность лица, тремор головы, конечностей (причем этот тре­мор исчезает в покое, во сне и усиливается при движениях), мо­нотонность речи. При повреждении бледного шара наблюдается миоклония - быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.

В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения ха­рактеризовались дискоординацией, отмечалось наличие незавершен­ных движений, при сидении - поникшая поза. Начав движение, жи­вотное долго не могло остановиться. У человека с дисфункцией блед­ного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе, появляется симптом пропульсии: длитель­ная подготовка к движению, затем быстрое движение и остановка. Та­кие циклы у больных повторяются многократно.

Ограда (claustrum) содержит полиморфные нейроны разных ти­пов. Она образует связи преимущественно с корой большого мозга.

Глубокая локализация и малые размеры ограды представляют определенные трудности для ее физиологического исследования. Это ядро имеет форму узкой полоски серого вещества, расположенного под корой большого мозга в глубине белого вещества.

Стимуляция ограды вызывает ориентировочную реакцию, пово­рот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи.

Известно, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.

Таким образом, базальные ядра головного мозга являются интегративными центрами организации моторики, эмоций, высшей нервной деятельности, причем каждая из этих функций может быть усилена или заторможена активацией отдельных образований ба-зальных ядер.

Человеческое тело состоит из большого количества органов и структур, главными из которых являются мозг и сердце. Сердце – это двигатель жизни, а головной мозг – координатор всех процессов. Кроме знаний о главных отделах мозга нужно знать и про базальные ганглии.

Базальные ядра отвечают за движение и координацию

Базальные ядра (ганглии) – скопления серого вещества, образующие группы ядер. Отвечает этот отдел мозга за движения и координацию.

Функции, которые обеспечивают ганглии

Двигательная активность проявляется из-за постоянного контроля пирамидного (кортико-спирального) тракта. Но он обеспечивает это не полностью. Часть функций берут на себя базальные ганглии. Болезнь Паркинсона или болезнь Вильсона вызываются именно патологическими нарушениями подкорковых скоплений серого вещества. Функции базальных ядер считаются жизненно важными, а их нарушения – трудноизлечимыми.

По утверждению ученых, основной задачей работы ядер является не сама двигательная активность, а ее контроль над функционированием, а также связь групп мышц и нервной системы. Наблюдается функция контроля над движениями человека. Характеризует это взаимодействие двух систем, которые включает в себя скопление подкоркового вещества. Стриопаллидарную и лимбическую системы имеют свои функциональные особенности. Первой свойственно контролировать сокращение мышц, что в совокупности образовывает координацию. Второй же подвластна работа и организация вегетативных функций. Их сбой приводит не только к дискоординации человека, но и к нарушению умственной деятельности головного мозга.

Сбои в работе ядер приводят к нарушению функции мозга

Особенности строения

Базальные ядра головного мозга имеют сложную структуру. По анатомическому строению они включают в себя:

  • стриатум (полосатое тело);
  • амигдалоидиум (миндалевидное тело);
  • ограду.

Современное изучение этих скоплений создало новое, удобное разделение ядер на скопление черной субстанции и покрышку ядра. Но такое образное строение не дает полной картины анатомических связей и нейротрансмиттеров, поэтому следует рассматривать именно анатомическую структуру. Так, понятие полосатого тела характеризовано скоплением белого и серого веществ. Они заметны при горизонтальном срезе полушарий головного мозга.

Базальные ганглии – сложный термин, включающий в себя понятия о строении и функциях полосатого и миндалевидного тела. К тому же полосатое тело состоит из чечевицеобразного и хвостатого ганглия. Их расположение и связь имеет свои особенности. Разделены базальные ганглии головного мозга нейронной капсулой. Хвостатая ганглия связана с таламусом.

Хвостатая ганглия связана с таламусом

Особенности строения хвостатой ганглии

Второй тип нейронов Гольджи идентичен строению хвостатого ядра. Нейроны играют не последнюю роль в образовании скоплений серого вещества. Это заметно по схожим особенностям, которые их и объединяют. Тонкость аксона и укороченность дендритов идентичны. Основные свои функции это ядро обеспечивает собственными связями с отдельными участками и отделами мозга:

  • таламусом;
  • бледным шаром;
  • мозжечком;
  • черной субстанцией;
  • ядрами преддверий.

Многофункциональность ядер делает их одним из самых важных участков мозга. Базальные ганглии и их связи обеспечивают не только координацию движений, но и вегетативные функции. Нельзя забывать и о том, что ганглии отвечают и за интегративную и познавательную способности.

Хвостатое ядро своими связями с отдельными участками мозга образовывает единую замкнутую нейронную сеть. И нарушение работы любого из ее участков может стать причиной серьезных проблем с нервно-двигательной активностью человека.

Нейроны крайне важны для серого вещества мозга

Особенности строения чечевицеобразного ядра

Базальные ядра соединяются между собой нейронными капсулами. Чечевицеобразное ядро находится снаружи от хвостатого и имеет с ним наружную связь. Эта ганглия имеет форму угла с расположенной посередине капсулой. Внутренняя поверхность ядра соединена с большими полушариями, а внешняя образовывает связь с головкой хвостатой ганглии.

Белое вещество является перегородкой, разделяющей чечевицеобразное ядро на две основные системы, различающиеся по цвету. Те, которые имеют темный оттенок – это скорлупа. А те, что более светлые – относятся к структуре бледного шара. Современные ученые, работающие в области нейрохирургии, считают чечевицеобразной ганглии частью стриопаллидарной системы. Ее функции связаны с вегетативным действием терморегуляции, а также метаболических процессов. Роль ядра значительно превышает гипоталамус по этим функциям.

Ограда и миндалевидное тело

Под оградой понимают тонкий слой серого вещества. Она имеет свои особенности, связанные со строением и связями со скорлупой и «островом»:

  • ограда находится в окружении белой субстанции;
  • ограда соединена с телом и скорлупой внутренней и внешней нейронной связью;
  • скорлупа граничит с миндалевидным телом.

Ученые уверенны, что миндалевидное тело выполняет несколько функций. Кроме основных, относящихся к лимбической системе, оно является составляющей отдела, отвечающего за обоняние.

Подтверждают связь нервные волокна, которые соединяют обонятельную долю с продырявленным веществом. Поэтом, миндалевидное тело и его работа являются неотъемлемой частью организации и контроля умственной работы. Страдает также и психологическое состояние человека.

Миндалевидное тело выполняет преимущественно обонятельную функцию

К каким проблемам приводит нарушение работы ганглий?

Возникающие патологические сбои и нарушения в базальных ядрах быстро приводят к ухудшению состояния человека. Страдает не только его самочувствие, но и качество умственной активности. Человек при нарушениях работы этого участка мозга может стать дезориентированным, страдать от депрессии и т. д. Виной этому два типа патологий – новообразования и функциональная недостаточность.

Любые новообразования в подкорковой части ядер опасны. Их появление и развитие приводит к инвалидности и даже к гибели человека. Поэтому при малейших симптомах патологии следует обратиться к врачу с целью диагностики и лечения. Виной образования кист или других новообразований являются:

  • перерождение нервных клеток;
  • атака инфекционных агентов;
  • травмы;
  • кровоизлияние.

Функциональная недостаточность диагностируется реже. Это связано с природой возникновения такой патологии. Проявляется она чаще у младенцев в период созревания нервной системы. У взрослых недостаточность характеризуется предшествующими инсультами или травмами.

Как показывают исследования, функциональная недостаточность ядер более чем в 50% случаев является основной причиной появления признаков болезни Паркинсона в старческом возрасте. Лечение такого заболевания зависит от тяжести самой патологии и своевременности обращения к специалистам.

Особенности диагностики и лечения

При малейших признаках нарушения деятельности базальных ганглий следует обратиться к невропатологу. Причиной этого могут стать таким симптомы:

  • нарушение двигательной активности мышц;
  • тремор;
  • частые спазмы мышц;
  • неконтролируемые движения конечностей;
  • проблемы с памятью.

Диагностика заболеваний проводится на основании общего осмотра. Если необходимо, пациента могут направить на томографию мозга. Такой тип исследования может показать дисфункциональные зоны не только базальных ядер, но и других участков головного мозга.

Лечение дисфункций базальных ядер малоэффективное. Чаще всего терапия уменьшает проявление симптомов. Но для того чтобы результат был постоянным, следует лечиться пожизненно. Любые перерывы могут негативно отразиться на самочувствии больного.

Координатором слаженной работы организма является головной мозг. Он состоит из разных отделов, каждый из которых выполняет определенные функции. Способность к жизнедеятельности человека напрямую зависит от этой системы. Одной из важных ее частей являются базальные ядра головного мозга.

Движение и отдельные виды высшей нервной деятельности – результат их труда.

Что представляют собой базальные ядра

Понятие «базальные» в переводе с латинского означает «относящийся к основанию». Оно дано не случайно.

Массивные участки серого вещества – подкорковые ядра головного мозга. Особенность расположения – в глубине. Базальные ганглии, как еще их называют, одни из самых «спрятанных» структур всего человеческого организма. Передний мозг, в составе которого они наблюдаются, находится над стволом и между лобными долями.

Данные образования представляют пару, части которой симметричны между собой. Базальные ядра углублены в белое вещество конечного мозга. Благодаря такому расположению происходит передача информации от одного отдела к другому. Взаимодействие с остальными участками нервной системы осуществляется с помощью специальных отростков.

На основе топографии разреза головного мозга анатомическое строение базальных ядер выглядит следующим образом:

  • Полосатое тело, которое включает хвостатое ядро головного мозга.
  • Ограда – тонкая пластина из нейронов. Отделена от остальных структур полосками белого вещества.
  • Миндалевидное тело. Расположено в височных долях. Его называют частью лимбической системы, в которую поступает гормон дофамин, обеспечивающий контроль за настроением и эмоциями. Представляет собой скопление клеток серого вещества.
  • Чечевицеобразное ядро. Включает бледный шар и скорлупу. Расположено в лобных долях.

Учеными разработана также функциональная классификация. Это представление базальных ганглий в виде ядер промежуточного и среднего мозга, и полосатого тела. Анатомия подразумевает их объединение в две большие структуры.

Полезно узнать: Костный мозг человека и его строение

Первая носит название стриопаллидарной. К ней относятся хвостатое ядро, белый шар и скорлупа. Вторая – экстрапирамидная. Помимо базальных ганглий, в нее входят продолговатый мозг, мозжечок, черная субстанция, элементы вестибулярного аппарата.

Функционал базальных ядер


Назначение этой структуры зависит от взаимодействия со смежными областями, в частности с корковыми отделами и участками ствола. А вместе с варолиевым мостом, мозжечком и спинным мозгом базальные ганглии работают над координацией и совершенствованием основных движений.

Главная их задача – обеспечение жизнедеятельности организма, выполнение базовых функций, интеграция процессов в нервной системе.

Основными являются:

  • Наступление периода сна.
  • Обмен веществ в организме.
  • Реагирование сосудов на изменение давления.
  • Обеспечение деятельности защищающих и ориентировочных рефлексов.
  • Словарный запас и речь.
  • Стереотипные, часто повторяющиеся движения.
  • Поддержание позы.
  • Расслабление и напряжение мышц, моторика мелкая и крупная.
  • Проявление эмоций.
  • Мимика.
  • Пищевое поведение.

Симптомы нарушения работы базальных ядер


Общее самочувствие человека напрямую зависит от состояния базальных ядер. Причины нарушения функционирования: инфекции, генетические заболевания, травмы, сбой в метаболизме, аномалии развития. Часто симптомы остаются незаметными на протяжении некоторого времени, пациенты не обращают внимания на недомогание.

Характерные признаки:

  • Вялость, апатия, плохое общее самочувствие и настроение.
  • Тремор в конечностях.
  • Понижение или повышение тонуса мускулатуры, ограничение в движениях.
  • Бедность мимики, невозможность выразить эмоции лицом.
  • Заикание, изменения в произношении.
  • Тремор в конечностях.
  • Помутнения в сознании.
  • Проблемы с запоминанием.
  • Потеря координации в пространстве.
  • Возникновение непривычных для человека поз, которые ранее ему были неудобны.


Эта симптоматика дает понимание значения базальных ядер для организма. Далеко не все их функции и способы взаимодействия с другими системами мозга установлены до настоящего времени. Некоторые до сих пор являются загадкой для ученых.

Патологические состояния базальных ядер


Патологии данной системы организма проявляются рядом заболеваний. Степень поражения также разная. От этого напрямую зависит жизнедеятельность человека.

  1. Функциональная дефицитарность. Возникает в раннем возрасте. Часто является следствием генетических отклонений, соответствующей наследственности. У взрослых людей приводит к болезни Паркинсона либо подкорковому параличу.
  2. Новообразования и кисты. Локализация разнообразна. Причины: нарушение питания нейронов, неправильный обмен веществ, атрофирование тканей мозга. Происходят патологические процессы внутриутробно: например, возникновение детского церебрального паралича связывают с поражением базальных ганглий во II и III триместрах беременности. Сложные роды, инфекции, травмы на первом году жизни ребенка способны спровоцировать рост кист. Синдром дефицита внимания и гиперактивность – следствие множественных новообразований у младенцев. В зрелом возрасте патология также возникает. Опасное последствие – кровоизлияние в головной мозг, которое часто заканчивается общим параличом или смертью. Но встречаются кисты бессимптомные. В этом случае лечения не требуется, их нужно наблюдать.
  3. Корковый паралич – определение, которое говорит о последствиях изменения в деятельности бледного шара и стриопаллидарной системы. Характеризуется вытягиванием губ, непроизвольными подергиваниями головы, перекашиванием рта. Отмечаются судороги, хаотические движения.

Диагностика патологий


Первичным этапом в установлении причин является осмотр врача-невропатолога. Его задача – проанализировать анамнез, оценить общее состояние и назначить ряд обследований.

Наиболее показательный метод диагностики – МРТ. Процедура точно установит локализацию пораженного участка.

Компьютерная томография, ультразвук, электроэнцефалография, исследование структуры сосудов и кровоснабжения головного мозга помогут в точной постановке диагноза.

Говорить о назначении схемы лечения и прогнозе некорректно до проведения вышеуказанных мероприятий. Только при получении результатов и их тщательном изучении доктор дает рекомендации больному.

Последствия патологий базальных ганглий


Базальные ядра включают хвостатое ядро, чечевицеобразное ядро, ограду, миндалевидное тело и прилежащее ядро.

Самым крупным из этих ядер является хвостатое ядро (п. caudatus). Оно вытянуто в ростро-каудальном направлении (спереди назад) и имеет С-образную форму (рис. 9.1).

Рис. 9.1.

пунктиром обозначены мозговые желудочки

Утолщенная передняя часть образует головку хвостатого ядра, она переходит в тело и заканчивается хвостом. На горизонтальном срезе (рис. 9.2, 7-8 ) видны только головка и хвост этого ядра. С медиальной стороны хвостатое ядро примыкает к таламусу, отделяясь от него конечной полоской (см. рис. 8.1).

Несколько латеральнее и ниже хвостатого ядра расположено чечевицеобразное ядро (п. lentiformis ) (см. рис. 9.1). Тонкими прослойками белого вещества оно делится на три части (рис. 9.2, 9-11). Латеральная часть - это ядро, называемое скорлупой (putamen ). Две медиальные части - это наружный и внутренний сегменты бледного шара (globuspallidus ). Бледный шар светлее скорлупы, так как пронизан многочисленными миелиновыми волокнами.

Чечевицеобразное ядро отделено от хвостатого ядра и таламуса прослойкой белого вещества - внутренней капсулой (capsula interna) (рис. 9.2, 12). Через нее проходят все проекционные волокна полушарий, которые связывают кору большого мозга с нижележащими структурами ЦНС. Сверху восходящие волокна образуют в белом веществе полушарий лучистый венец (corona radiata ), а книзу волокна нисходящих проводящих путей в виде компактных пучков направляются в ножки среднего мозга.

Еще латеральнее скорлупы, между ней и островковой корой (см. ниже) лежит полоска серого вещества - ограда (claustrum).

Хвостатое ядро, бледный шар и скорлупа на разрезе выглядят как чередующиеся полоски серого и белого вещества. Из-за этого они были объединены под общим названием «полосатое тело» (corpus striatum). При изучении клеточного состава и характера связей базальных ганглиев выяснилось, что бледный шар является филогенетически более древним образованием и значительно отличается от хвостатого ядра и скорлупы. В связи с этим бледный шар (globus paUidus) выделяют из полосатого тела как отдельную единицу - паллидум. Филогенетически более молодые хвостатое ядро и скорлупу принято называть неостриатум , или просто стри- атум. Вместе они образуют стриопаллидарную систему , имеющую очень обширные связи.

Рис. 9.2.

комиссуры свода:

  • 1 - продольная срединная щель; 2 - лобный полюс; 3 - затылочный полюс;
  • 4 - колено мозолистого тела; 5 - полость прозрачной перегородки; 6 - пластина прозрачной перегородки; 7-8 - головка (7) и хвост (8) хвостатого ядра;
  • 9 - скорлупа; 10 - ограда; 11 - наружный и внутренний сегменты бледного шара;
  • 12 - внутренняя капсула; 13-14 - передний (13) и задний (14) рога бокового желудочка; 15 - III желудочек; 16 - островковая доля; 17 - мамилло-таламический пучок; 18 - комиссура свода; 19 - валик мозолистого тела; 20 - гиппокамп;
  • 21 - бахромка гиппокампа; 22 - таламус

Основные афференты стриопаллидарной системы получает стриатум. Это волокна от коры больших полушарий, в основном от зоны кожно- мышечной чувствительности и двигательной зоны (поля 1-4; см. рис. 9.9) и лобной доли в целом. Также сюда приходят дофаминергические волокна от компактной части черной субстанции, волокна от мозжечка и от неспецифических таламических ядер. Большинство эфферентов стри- атума идет к бледному шару. Часть волокон направляется к ретикулярной части черной субстанции. Есть и менее значительные связи с различными двигательными структурами.

Бледный шар получает основные афференты от стриатума и, кроме того, от субталамуса. Эфференты паллидума идут к таламическим ядрам VA, VL (двигательные проекционные ядра), а также они направляются к субталамусу и ядрам поводков в эпиталамусе.

Основные функции стриопаллидарной системы связаны с управлением движениями. Наряду с мозжечком она является крупнейшим подкорковым двигательным центром. При этом если мозжечок связан с регуляцией конкретных параметров выполняемых движений (амплитудой мышечных сокращений, их согласованностью при одновременной реализации и т.п.), то стриопаллидарная система рассматривается как область, управляющая запуском движений и содержащая информацию о двигательных программах - последовательных комплексах движений. Действительно, при запуске движений активация нервных клеток наблюдается сначала в ассоциативной лобной коре, затем в стриатуме и бледном шаре, премоторной коре и лишь затем - в моторной коре больших полушарий и мозжечке. Как и мозжечок, структуры стриопаллидарной системы участвуют в двигательном обучении и превращении исходно произвольных (т.е. выполняемых иод контролем сознания) движений в автоматизированные. При повреждении, например, стриатума наблюдается запуск патологических движений - высокоамплитудных подергиваний рук (хорея), скручиваний туловища (атетоз). Проявления паркинсонизма (тремор и т.п.) также связаны в основном с нарушением влияния черной субстанции на хвостатое ядро.

Миндалевидное тело (corpus amygdaloideum ) - сферическое образование, располагающееся под скорлупой около внутренней части переднего отдела височной коры (см. рис. 9.1, 4). Амигдала (миндалина) соприкасается с хвостом хвостатого ядра, который, закручиваясь, заходит в височные доли. Она имеет многочисленные связи с корой больших полушарий, гипоталамусом, обонятельными мозговыми структурами. Амигдала входит в Л С мозга и играет важнейшую роль в деятельности системы потребностей и эмоций (в частности, в регуляции проявлений агрессивности, страха и др.). Повреждение миндалины часто ведет к глубоким изменениям психики, депрессивным и маниакальным состояниям.

Прилежащее ядро (п. accumbens ) расположено в вентроростральной области базальных ганглиев, перед бледным шаром под головкой хвостатого ядра (см. рис. 9.1, 6). Это ядро является важнейшим центром положительного подкрепления и ключевой областью мезолимбического пути (см. параграф 6.6). Главные афференты аккумбенс получает от лобной ассоциативной коры, амигдалы и вентральной тегментальной области. Эфференты от этого ядра идут к бледному шару, оттуда к ядру MD таламуса, которое дает проекции на лобную ассоциативную кору. Большинство психических процессов, связанных с получением удовольствия (и обучением, происходящим на фоне этого удовольствия), базируются на активации аккумбенса.