Наземно воздушная среда обитания кратко. Общая характеристика почвы как среды жизни

Наземно-воздушная среда характеризуется особенностями экологических условий, сформировавших специфические приспособления у сухопутных растений и животных, что выразилось в разнообразии морфологических, анатомических, физиологических, биохимических и поведенческих адаптаций.

Низкая плотность атмосферного воздуха затрудняет поддержание формы тела, потому у растений и животных образовалась опорная система. У растений это механические ткани (лубяные и древесинные волокна), которые обеспечивают сопротивление статическим и динамическим нагрузкам: ветру, дождю, снежному покрову. Напряженное состояние клеточной стенки (тургор), вызванное накоплением в вакуолях клеток жидкости с высоким осмотическим давлением обусловливает упругость листьев, стеблей трав, цветков. У животных опору телу создает гидроскелет (у круглых червей), наружный скелет (у насекомых), внутренний (у млекопитающих).

Низкая плотность среды облегчает передвижение животных. Многие наземные виды способны к полету (активному или планирующему) - птицы и насекомые, есть и представители млекопитающих, амфибий и рептилий. Полет связан с передвижением и поиском добычи Активный полет возможен за счет модифицированных передних конечностей, развитых грудных мышц. У планирующих животных образовались между передними и задними конечностями сформировались кожные складки, которые растягиваются и играют роль парашюта.

Высокая подвижность воздушных масс сформировала у растений древнейший способ опыления растений ветром (анемофилия) характерную для многих растений средний полосы и расселения с помощью ветра. Эта экологическая группа организмов (аэропланктон) адаптировалась благодаря большой относительной площади поверхности за счет парашютиков, крыльев, выростов и даже паутины, либо за счет очень мелких размеров.

Низкое атмосферное давление, которое в норме составляет 760 мм ртутного столба (или 101 325 Па), малые перепады давления, сформировали почти у всех обитателей суши чувствительность к сильным перепадам давления. Верхняя граница жизни для большинства позвоночных животных - около 6 000 м. Снижение атмосферного давления с повышением высоты над уровнем моря уменьшает растворимость кислорода в крови. Это увеличивает частоту дыхания, а в результате частое дыхание приводит к обезвоживанию организма. Эта простая зависимость не характерна только для редких видов птиц и некоторых беспозвоночных.

Газовый состав наземно-воздушной среды отличается высоким содержанием кислорода (более чем в 20 раз выше, чем в водной среде). Это позволяет животным иметь очень высокий уровень обмена веществ. Поэтому только на суше могла возникнуть гомойтермность (способность поддерживать постоянную температуру тела, в основном, за счет внутренней энергии).



Значение температуры в жизни организмов определяется влиянием на скорость биохимических реакций. Повышение температуры (до 60 ° С) окружающей среды вызывает у организмов денатурацию белков. Сильное понижение температуры приводит к понижению скорости обмена веществ и как критическое состояние – замерзание воды в клетках (кристаллы льда в клетках нарушают целостность внутриклеточных структур). В основном на суше живые организмы могут существовать только в пределах 0 ° - +50 ° , т.к. эти температуры совместимы с протеканием основных процессов жизнедеятельности. Однако каждый вид имеет свое верхнее и нижнее летальное значение температуры, значение температурного угнетения и температурного оптимума.

Организмы, жизнедеятельность и активность которых зависят от внешнего тепла (микроорганизмы, грибы, растения, беспозвоночные, круглоротые, рыбы, земноводные, пресмыкающиеся) называются пойкилотермами. Среди них есть стенотермы (криофилы - приспособлены небольшим перепадам низких температур и термофилы - приспособлены небольшим перепадам высоких температур) и эвритермы, которые могут существовать при пределах большой температурной амплитуде. Приспособления к перенесению низких температур, позволяющие регулировать обмен веществ в течение длительного времени, осуществляется у организмов двумя способами: а) способность к биохимическим и физиологическим перестройкам - накопление антифризов, которые понижают точку замерзания жидкостей в клетках и тканях и следовательно препятствуют образованию льда; изменение набора, концентрации и активности ферментов, изменение; б) выносливость к замерзанию (холодостойкость) - это временное прекращение активного состояния (гипобиоз или криптобиоз) или накопление в клетках глицерина, сорбита, маннита, которые препятствуют кристаллизации жидкости.

У эвритермов хорошо развита способность перехода в латентное состояние при значительных отклонениях температуры от оптимального значения. После холодового угнетения организмы при определенной температуре восстанавливают нормальный обмен веществ, а это значение температуры называется температурным порогом развития, или биологическим нулем развития.

В основе сезонных перестроек у видов – эвритермов, имеющих широкое распространение, лежит акклимация (сдвиг температурного оптимума), когда происходит инактивация одних генов и включение других, отвечающих за замену одних ферментов другими. Это явление обнаруживается в разных частях ареала.

У растений метаболическое тепло крайне ничтожно, поэтому их существование определяется температурой воздуха в пределах местообитания. Растения адаптируются к перенесению достаточно больших колебаний температуры. Главным при этом является транспирация, охлаждающая поверхность листьев при перегреве; уменьшение листовой пластинки, подвижность листа, опушение, восковой налет. К холодным условия растения приспосабливаются с помощью формы роста (карликовость, подушковидный рост, шпалерность), окраски. Все это относится к физической терморегуляии. Физиологическая терморегуляция – это опад листвы, отмирание наземной части, перевод свободной воды в связанное состояние, накопление антифризов и т. д.).

Пойкилотермные животные имеют возможность испарительной терморегуляции, связанной с их перемещением в пространстве (земноводные, рептилии). Они выбирают наиболее оптимальные условия, производят много внутреннего (эндогенного) тепла в процессе сокращения мускулатуры или мышечной дрожи (разогревают мышцы во время передвижения). Животные имеют поведенческие адаптации (поза, укрытия, норы, гнезда).

Гомойтермные животные (птицы и млекопитающие) имеют постоянную температуру тела и мало зависят от температуры окружающей среды. Для них характерны адаптации, основанные на резком повышении окислительных процессов в результате совершенства нервной, кровеносной, дыхательной и других систем органов. У них существует биохимическая терморегуляция (при понижении температуры воздуха усиливается обмен липидов; усиливаются окислительные процессы, особенно в скелетных мышцах; есть специализированная бурая жировая ткань, в которой вся освобождающаяся химическая энергия идет на образование АТФ, а на обогревание организма; увеличивается объем потребляемой пищи). Но такая терморегуляция имеет климатические ограничения (невыгодна зимой, в полярных условия, летом в тропическом и экваториальном поясах).

Экологически выгодна физическая терморегуляция(рефлек-торное сужение и расширение кровеносных сосудов кожи, теплоизоляционное действие меха и перьев, противоточный теплообмен), т.к. осуществляется за счет сохранения тепла в теле (Чернова, Былова, 2004).

Поведенческая терморегуляция гомойтермов характеризуется разнообразием: изменение позы, поиски укрытий, сооружение сложных нор, гнезд, миграции, групповое поведение и пр.

Важнейшим экологическим фактором для организмов является свет. Процессы, протекающие под действием света - это фотосинтез (используется 1-5% падающего света), транспирация (используется 75% падающего света расходуется на испарение воды), синхронизация жизнедеятельности, движение, зрение, синтез витаминов.

Морфология растений и структура растительных сообществ организованы для наиболее эффективного восприятия солнечной энергии. Светоприемная поверхность растений Земного шара в 4 раза больше, чем поверхность планеты (Акимова, Хаскин, 2000). Для живых организмов имеет значение длина волн, т.к. лучи разной длины имеют разное биологическое значение: инфракрасное излучение (780 – 400 нм) действует на тепловые центры нервной системы, регулируя окислительные процессы, двигательные реакции и др, ультрафиолетовые лучи (60 - 390 нм) действуя на покровные ткани, способствуют выработке различных витаминов, стимулируют рост и размножение клеток.

Особое значение имеет видимый свет, т.к. для растений важен качественный состав света. В спектре лучей выделяют фотосинтетическую активную радиацию (ФАР). Длина волн этого спектра лежит в пределах 380 – 710 (370- 720 нм).

Сезонная динамика освещенности связана с закономерностями астрономического характера, сезонной климатической ритмикой данной местности и на разных широтах выражена по разному. Для нижних ярусов на эти закономерности налагается и фенологическое состояние растительности. Большое значение имеет суточный ритм изменения освещенности. Ход радиации нарушается изменениями состояния атмосферы, облачности и др. (Горышина,1979).

Растение представляет собой непрозрачное тело, которое частично отражает свет, поглощает и пропускает. В клетках и тканях листьев есть различные образования которые обеспечивают поглощение и пропускание света Для повышения продуктивности растения увеличивают общую площадь и количество фотосинтезирующих элементов, что достигается многоэтажным расположением листьев на растении; ярусным расположением растений в сообществе.

По отношению к силе освещения выделяют три группы: светолюбивые, тенелюбивые, теневыносливые, которые отличаются анатомо-морфологическими адаптациями (у светолюбивых растений листья - мельче, подвижные, опушенные, имеют восковой налет, толстую кутикулу, кристаллические выключения и др. у тенелюбивых - листья крупные, хлоропласты крупные и многочисленные); физиологическими адаптациями (разные значения световой компенсации).

Реакция на длину светового дня (продолжительность освещения) называется фотопериодизмом. У растений такие важные процессы как цветение, образование семян, рост, переход в состояние покоя, листопад связан с сезонными изменениями длины дня и температурой. Для цветения одних растений нужна длина дня свыше 14 часов, для других достаточно 7 часов, третьи цветут независимо от длины дня.

Для животных свет информационное значение. Прежде всего по суточной активности животные делятся на дневных, сумеречных, ночных. Органом, помогающим ориентироваться в пространстве, являются глаза. У разных организмов разное стереоскопическое зрение - у человека общее зрение 180 ° - стереоскопическое-140 ° , у кролика - общее 360 ° , стереоскопическое20 ° . Бинокулярное зрение в основном характерно для хищных животных (кошачьих и птиц). Кроме того, реакцией на свет определяется фототаксис (движение на свет),

размножение, навигация (ориентирование на положение Солнца), биолюминенценция. Свет является сигналом для привлечения особей другого пола.

Важнейшим экологическим фактором в жизни наземных организмов является вода. Она необходима для поддержания структурной целостности клеток, тканей, всего организма, т.к. является основной частью протоплазмы клеток, тканей, растительных и животных соков. Благодаря воде осуществляются биохимические реакции, поступление питательных веществ, газообмен, выделение и др. Содержание воды в организме растений и животных достаточно высокое (в листьях трав - 83-86%, листьях деревьев - 79-82%. стволах деревьев 40-55%, в телах насекомых - 46-92%, земноводных – до 93%, млекопитающих - 62-83%).

Существование в наземно-воздушной среде ставит перед организмами важную проблему сохранения воды в теле. Поэтому форма и функции растений и животных суши приспособлены к защите от иссушения. В жизни растений важно поступление воды, проведение ее и транспирация, водный баланс, (Вальтер, 1031,1937, Шафер, 1956). Изменения водного баланса лучше всего отражает сосущая сила корней.

Растение может всасывать воду из почвы до тех пор, пока сосущая сила корней может конкурировать с сосущей силой почвы. Сильно разветвленная корневая система обеспечивает большую площадь соприкосновения поглощающей части корня с почвенными растворами. Общая протяженность корней может достигать 60 км. Сосущая сила корней меняется в зависимости от погоды, от экологических свойств. Чем больше всасывающая поверхность корней, тем больше поглощается воды.

По регуляции водного баланса растения делятся на пойкилогидрические (водоросли, мхи, папоротники, некоторые цветковые) и гомойгидрические (большинство высших растений).

По отношению к водному режиму выделяют экологические группы растений.

1. Гигрофиты - наземные растения, обитающие во влажных местообитаниях с высокой влажностью воздуха и почвенным водоснабжением. Характерными признаками гигрофитов являются толстые слаборазветвленные корни, воздухоносные полости в тканях, открытые устьица.

2. Мезофиты-растения умеренно увлажненных местообитаний. Способность переносить почвенную и атмосферную засуху у них ограничены. Могут встречаться в засушливых местообитаниях - быстро развиваясь за короткий период. Характерна хорошо развитая корневая система с многочисленными корневыми волосками, регуляция интенсивности транспирации.

3. Ксерофиты - растения сухих местообитаний. Это засухоустойчиваые растения, сухотерпцы. Степные ксерофиты могут терять без ущерба до 25 % воды, пустынные - до 50% содержащейся в них воды (для сравнения лесные мезофиты увядают при потере 1% содержащейся в листьях воды). По характеру анатомо-морфологических и физиологических адаптаций, обеспечивающих активную жизнь этих растений при дефиците влаги, ксерофиты делятся на суккуленты (имеют мясистые и сочные листья и стебли, способны накапливать в тканях большое количество воды, развивают небольшую сосущую силу и впитывают влагу атмосферных осадков) и склерофиты (сухие на вид растения, интенсивно испаряющие влагу, имеют узкие и мелкие листья, которые иногда сворачиваются в трубочку, способны выдерживать сильное обезвоживание, сосущая сила корней может быть до нескольких десятков атмосфер).

У разных групп животных в процессе приспособления к условиям наземного существования главным было предотвращение потерь воды. Животные получают воду разными способами – через питье, с сочной пищей, в результате метаболизма (за счет окисления и расщепления жиров, белков и углеводов). Некоторые животные могут впитывать воду через покровы из влажного субстрата или воздуха. Потери воды происходят в результате испарения с покровов, испарения со слизистых оболочек дыхательных путей, выделения мочи и непереваренных остатков пищи. Животные, получающие воду через питье, зависят от расположения водоемов (крупные млекопитающие, многие птицы).

Важным фактором для животных является влажность воздуха, т.к. этот показатель определяет величину испарения с поверхности тела. Именно поэтому для водного баланса организма животных имеет значение строение покровов тела. У насекомых уменьшение испарения воды с поверхности тела обеспечивает почти непроницаемая кутикула и специализированные органы выделения (мальпигиевы трубочки), выделяющие почти нерастворимый продукт обмена, и дыхальца, уменьшающие потери воды через систему газообмена - через трахеи и трахеолы.

У амфибий основная масса воды в организм поступает через проницаемую кожу. Проницаемость кожи регулируется гормоном, который выделяется задней долей гипофиза. Амфибии выделяют очень большое количество разбавленной мочи, гипотоничной по отношению к жидкостям тела. В засушливых условиях амфибии могут уменьшать потери воды с мочой. Кроме того, эти животные могут накапливать воду в мочевом пузыре и подкожных лимфатических пространствах.

Рептилии обладают множеством адаптаций разного уровня - морфологических (потере воды препятствует ороговевшая кожа), физиологических (легкие, расположенные внутри тела, что снижает потери воды), биохимических (в тканях образуется мочевая кислота, которая выводится без большой потери влаги, ткани способны переносить повышение концентрации солей на 50%).

У птиц скорость испарения невелика (кожа относительно непроницаема для воды, отсутствуют потовые железы и перья). Птицы теряют воду (до 35% веса тела за сутки) при дыхании из-за высокой вентиляции в легких и высокой температурой тела. У птиц есть процесс реабсорбции воды из части воды из мочи и фекалий. У некоторых морских птиц (пингвины, олуши, бакланы, альбатросы), которые питаются рыбой и пьют морскую воду, есть солевые железы, расположенные в глазницах, с помощью которых выводится избыток солей из организма.

У млекопитающих органами выделения и осморегуляции служат парные сложно устроенные почки, которые снабжаются кровью и регулируют состав крови. Это обеспечивает постоянный состав внутриклеточной и внутритканевой жидкости. Относительно стабильное осмотическое давление крови поддерживается за счет баланса между поступлением воды с питьем и потерей воды с выдыхаемым воздухом, потом, выделяемыми калом и мочой. Ответственным за тонкую регуляцию осмотического давления является антидиуретический гормон (АДГ), который выделяется из задней доли гипофиза.

Среди животных выделяют группы: гигрофилов, у которых механизмы регуляции водного обмена слабо развиты или вообще отсутствуют (это влаголюбивые животные, нуждающиеся в высокой влажности среды - ногохвостки, мокрицы, комары, другие членистоногие, наземные моллюски и амфибии); ксерофилов, имеющих хорошо развитые механизмы регуляции водного обмена и приспособления к удержанию воды в теле, обитающих в засушливых условиях; мезофилов, обитающих в условиях умеренной влажности.

Косвенно действующим экологическим фактором в наземно-воздушной среде является рельеф. Все формы рельефа влияют на распространение растений и животных через изменение гидротермического режима или почвенно-грунтового увлажнения.

В горах на разной высоте над уровнем моря изменяются климатические условия, следствием чего является высотная поясность. Географическая изоляция в горах способствует образованию эндемиков, сохранению реликтовых видов растений и животных. Речные поймы способствую продвижению на север более южных группировок растений и животных. Большое значение имеет экспозиция склонов, которая создает условия для распространения на север по южным склонам теплолюбивых сообществ, а по северным склонам на юг холодолюбивых сообществ («правило предварения», В.В. Алехина).

Почва существует только в наземно-воздушной среде и формируется в результате взаимодействия возраста территории, материнской породы, климата, рельефа, растений и животных, деятельности человека. Экологическое значение имеет механический состав (размер минеральных частиц), химический состав (рН водного раствора), засоление почв, почвенное богатство. Характеристики почв также действуют на живые организмы как косвенные факторы, изменяя термо-гидрологический режим, вызывая у растений (в первую очередь) приспособления к динамике этих условий и влияя на пространственную дифференциацию организмов.

НОВЫЙ ВЗГЛЯД Адаптации организмов к обитанию в наземно-воздушной средеЖивые организмы в наземно-воздушной среде окружены воздухом. Воздух имеет низкую плотность и, как следствие, малую подъемную силу, незначительную опорность и низкую сопротивляемость при движении организмов. Наземные организмы живут в условиях сравнительно низкого и постоянного атмосферного давления, также обусловленного низкой плотностью воздуха.

Воздух обладает низкой теплоемкостью, поэтому он быстро нагревается и столь же быстро охлаждается. Скорость этого процесса находится в обратной зависимости от количества содержащихся в нем водяных паров.

Легкие воздушные массы имеют большую подвижность, как в горизонтальном, так и в вертикальном направлении. Это способствует поддержанию на постоянном уровне газового состава воздуха. Содержание кислорода в воздухе значительно выше, чем в воде, поэтому кислород на суше не является лимитирующим фактором.

Свет в условиях наземного обитания из-за высокой прозрачности атмосферы не выступает в качестве лимитирующего фактора, в отличие от водной среды.

Наземно-воздушная среда имеет разные режимы влажности: от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Велика также изменчивость влажности воздуха в течение суток и сезонов года.

Влага на суше выступает в качестве лимитирующего фактора.

Из-за наличия гравитации и отсутствия выталкивающей силы у наземных обитателей суши хорошо развиты опорные системы, поддерживающие их тело. У растений - это разнообразные механические ткани, особенно мощно развитые у деревьев. Животные в ходе эволюционного процесса выработали как наружный (членистоногие), так и внутренний (хордовые) скелет. Некоторые группы животных имеют гидроскелет (круглые и кольчатые черви). Проблемы у наземных организмов с поддержанием тела в пространстве и преодолением сил гравитации ограничили их предельную массу и размеры. Самые крупные животные суши уступают по размерам и массе гигантам водной среды (масса слона достигает 5 т, а синего кита - 150 т).

Низкая сопротивляемость воздуха способствовала прогрессивной эволюции систем передвижения наземных животных. Так, наиболее высокую скорость движения по суше приобрели млекопитающие, а птицы освоили воздушную среду, развив способность к полету.

Большая подвижность воздуха в вертикальном и горизонтальном направлениях используется некоторыми наземными организмами на разных стадиях их развития для расселения с помощью воздушных потоков (молодые пауки, насекомые, споры, семена, плоды растений, цисты протистов). По аналогии с водными планктонными организмами в качестве приспособлений к пассивному парению в воздушной среде насекомые выработали сходные адаптации - мелкие размеры тела, разнообразные выросты, увеличивающие относительную поверхность тела или некоторых его частей. Семена и плоды, распространяемые ветром, имеют различные крыловидные и парагаютовидные придатки, увеличивающие их способность к планированию.

Приспособления наземных организмов к сохранению влаги также разнообразны. У насекомых тело надежно защищено от высыхания многослойной хитинизированной кутикулой, в наружном слое которой содержатся жиры и воскоподобные вещества. Сходные водосберегающие приспособления развиты и у пресмыкающихся. Выработанная у наземных животных способность к внутреннему оплодотворению сделала их независимыми от наличия водной среды.

Почва представляет собой сложную систему, состоящую из твердых частиц, окруженных воздухом и водой.

В зависимости от типа - глинистая, песчаная, глинисто-песчаная и др. - почва в большей или меньшей степени пронизана полостями, заполненными смесью газов и водными растворами. В почве, по сравнению с приземным слоем воздуха, сглажены температурные колебания, а на глубине 1 м неощутимы и сезонные изменения температуры.

Самый верхний горизонт почвы содержит большее или меньшее количество перегноя, от которого зависит продуктивность растений. Расположенный под ним средний слой содержит вымытые из верхнего слоя и преобразованные вещества. Нижний слой представлен материнской породой.

Вода в почве присутствует в пустотах, мельчайших пространствах. Состав почвенного воздуха резко меняется с глубиной: содержание кислорода уменьшается, а углекислого газа - возрастает. При затоплении почвы водой или интенсивном гниении органических остатков возникают бескислородные зоны. Таким образом, условия существования в почве различны на разных ее горизонтах.

В ходе эволюции эта среда была освоена позже, чем водная. Ее особенность заключается в том, что она газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода.

В ходе эволюции у живых организмов выработались необходимые анатомо-морфологические, физиологические, поведенческие и другие адаптации.

Животные в наземно-воздушной среде передвигаются по почве или по воздуху (птицы, насекомые), а растения укореняются в почве. В связи с этим, у животных появились легкие и трахеи, а у растений – устьичный аппарат, т.е.

органы, которыми сухопутные обитатели планеты усваивают кислород прямо из воздуха. Сильное развитие получили скелетные органы, обеспечивающие автономность передвижения по суше и поддерживающие тела со всеми его органами в условиях незначительной плотности среды, в тысячи раз меньшей по сравнению с водой.

Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток.

Воздействия их на организмы неразрывно связано с движением воздуха и положения относительно морей и океанов и сильно отличаются от воздействия в водной среде (табл.

Таблица 5

Условия обитания организмов воздушной и водной среды

(по Д. Ф. Мордухай-Болтовскому, 1974)

воздушной среды водной среды
Влажность Очень важное (часто в дефиците) Не имеет (всегда в избытке)
Плотность Незначительное(за исключением почвы) Большое по сравнению с ее ролью для обитателей воздушной среды
Давление Почти не имеет Большое (может достигать 1000 атмосфер)
Температура Существенное (колеблется в очень больших пределах – от -80 до +1ОО°С и более) Меньшее по сравнению со значением для обитателей воздушной среды (колеблется гораздо меньше, обычно от -2 до +40°С)
Кислород Несущественное(большей частью в избытке) Существенное (часто в дефиците)
Взвешенные вещества Неважное; не используются в пищу (главным образом минеральные) Важное (источник пищи, особенно органические вещества)
Растворенные вещества в окружающей среде В некоторой степени (имеют значение только в почвенных растворах) Важное (в определенном количестве необходимы)

У животных и растений суши выработались свои, не менее оригинальные адаптации на неблагоприятные факторы среды: сложное строение тела и его покровов, периодичность и ритмика жизненных циклов, механизмы терморегуляции и пр.

Выработалась целенаправленная подвижность животных в поисках пищи, появились переносимые ветром споры, семена и пыльца растений, а также растения и животные, жизнь которых всецело связана с воздушной средой. Сформировалась исключительно тесная функциональная, ресурсная и механическая взаимосвязь с почвой.

Многие из адаптаций были рассмотрены нами выше, в качестве примеров при характеристике абиотических факторов среды.

Поэтому сейчас повторяться нет смысла, т.б., что к ним мы вернемся еще на практических занятиях

Почва как среда обитания

Земля — единственная из планет имеет почву (эдасфера, педосфера)– особенную, верхнюю оболочку суши.

Эта оболочка сформировалась в исторически обозримое время – она ровесница сухопутной жизни на планете. Впервые на вопрос о происхождении почвы ответил М.В. Ломоносов ("О слоях земли"): "…почва произошла от согнития животных и растительных тел … долготою времени…".

А великий русский ученый Вас. Вас. Докучаев (1899: 16) впервые назвал почву самостоятельным природным телом и доказал, что почва есть "…такое же самостоятельное естественноисторическое тело, как любое растение, любое животное, любой минерал … оно есть результат, функция совокупной, взаимной деятельности климата данной местности, ее растительных и животных организмов, рельефа и возраста страны…, наконец, подпочвы, т.е.

грунтовых материнских горных пород. … Все эти агенты-почвообразователи, в сущности, совершенно равнозначные величины и принимают равноправное участие в образовании нормальной почвы…".

И уже современный известный ученый почвовед Н.А.

Качинский ("Почва, ее свойства и жизнь", 1975) дает следующее определение почвы: "Под почвой надо понимать все поверхностные слои горных пород, переработанные и измененные совместным воздействием климата (свет, тепло, воздух, вода), растительных и животных организмов".

Основными структурными элементами почвы являются: минеральная основа, органическое вещество, воздух и вода.

Минеральная основа (скелет) (50-60% всей почвы) – это неорганическое вещество, образовавшееся в результате подстилающей горной (материнской, почвообразующей) породы в результате ее выветривания.

Размеры скелетных частиц: от валунов и камней до мельчайших песчинок и илистых частиц. Физико-химические свойства почв обусловлены в основном составом почвообразующих пород.

От соотношения в почве глины и песка, размеров фрагментов, зависят проницаемость и пористость почвы, обеспечивающие циркуляцию, как воды, так и воздуха.

В умеренном климате идеально, если почва образована равными количествами глины и песка, т.е. представляет суглинок.

В этом случае почвам не грозит ни переувлажнение, не пересыхание. И то и другое одинаково губительно как для растений, так для и животных.

Органическое вещество – до 10% почвы, образуется из отмершей биомассы (растительная масса – опад листьев, ветвей и корней, валежные стволы, ветошь травы, организмы погибших животных), измельченной и переработанной в почвенный гумус микроорганизмами и определенными группами животных и растений.

Более простые элементы, образовавшиеся в результате разложения органики, вновь усваиваются растениями и вовлекаются в биологический круговорот.

Воздух (15-25%) в почве содержится в полостях – порах, между органическими и минеральными частицами. При отсутствии (тяжелые глинистые почвы) или заполнении пор водой (во время подтоплений, таяния мерзлоты) в почве ухудшается аэрация и складываются анаэробные условия.

В таких условиях тормозятся физиологические процессы организмов, потребляющих кислород – аэробов, разложение органики идет медленно. Постепенно накапливаясь, они образуют торф. Большие запасы торфа характерны для болот, заболоченных лесов, тундровых сообществ. Торфонакопление особенно выражено в северных регионах, где холодность и переувлажнение почв взаимообусловливают и дополняют друг друга.

Вода (25-30%) в почве представлена 4 типами: гравитационной, гигроскопической (связанной), капиллярной и парообразной.

Гравитационная – подвижная вода, занимают широкие промежутки между частицами почвы, просачивается вниз под собственной тяжестью до уровня грунтовых вод.

Легко усваивается растениями.

Гигроскопическая, или связанная – адсорбируется вокруг коллоидных частиц (глина, кварц) почвы и удерживается в виде тонкой пленки за счет водородных связей. Освобождается от них при высокой температуре (102-105°С). Растениям она недоступна, не испаряется. В глинистых почвах такой воды до 15%, в песчаных – 5%.

Капиллярная – удерживается вокруг почвенных частиц силой поверхностного натяжения.

По узким порам и каналам – капиллярам, поднимается от уровня грунтовых вод или расходится от полостей с гравитационной водой. Лучше удерживается глинистыми почвами, легко испаряется.

Растения легко поглощают ее.

Парообразная – занимает все свободные от воды поры. Испаряется в первую очередь.

Осуществляется постоянный обмен поверхностных почвенных и грунтовых вод, как звено общего круговорот воды в природе, меняющий скорость и направление в зависимости от сезона года и погодных условий.

Похожая информация:

Поиск на сайте:

Газовый состав атмосферы также является важным климатическим фактором.

Примерно 3 -3,5 млрд. лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами.

Именно в наземной обстановке, набазе высокой эффек-тивности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содер-жания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, со-здается временный его дефицит, например в скоплениях разлагаю-щихся растительных остатков, запасах зерна, муки и т. п.

Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточ-ные изменения содержания углекислоты в приземных слоях, свя-занные с ритмом фотосинтеза растений, и сезонные, обусловлен-ные изменениями интенсивности дыхания живых организмов, преи-мущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулкани-ческой активности, возле термальных источников и других подземных выходов этого газа.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность.

Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения - разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим, скелетом.

Ветер

бури

Давление

Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт.,ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального. Низкое дав-ление может ограничивать распространение видов в горах. Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения часто-ты дыхания.

Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.

В целом все наземные организмы гораздо более стенобатны, чем водные.

Наземно-воздушная среда обитания

В ходе эволюции эта среда была освоена позже, чем водная. Экологические факторы в наземно-воздушной среде отличаются от других сред обитания высокой интенсивностью света, значительными колебаниями температуры и влажности воздуха, корреляцией всех факторов с географическим положением, сменой сезонов года и времени суток.

Среда газообразная, поэтому характеризуется низкими влажностью, плотностью и давлением, высоким содержанием кислорода.

Характеристика абиотических факторов среды света, температуры, влажности – см предыдущую лекцию.

Газовый состав атмосферы также является важным климатическим фактором. Примерно 3 -3,5 млрд. лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами.

В настоящее время атмосфера состоит в основном из азота, кислорода и относительно меньшего количества аргона и углекислого газа.

Все остальные имеющиеся в атмосфере газы содержатся лишь в следовых количествах. Особое значение для биоты имеет относительное содержание кислорода и углекислого газа.

Именно в наземной обстановке, набазе высокой эффек-тивности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содер-жания в воздухе, не является фактором, лимитирующим жизнь в наземной среде.

Лишь местами, в специфических условиях, со-здается временный его дефицит, например в скоплениях разлагаю-щихся растительных остатков, запасах зерна, муки и т. п.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пре-делах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточ-ные изменения содержания углекислоты в приземных слоях, свя-занные с ритмом фотосинтеза растений, и сезонные, обусловлен-ные изменениями интенсивности дыхания живых организмов, преи-мущественно микроскопического населения почв.

Повышенное насыщение воздуха углекислым газом возникает в зонах вулкани-ческой активности, возле термальных источников и других подземных выходов этого газа. Низкое содержание углекислого газа тормозит процесс фото-синтеза.

В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа; этим поль-зуются в практике тепличного и оранжерейного хозяйства.

Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд микроорганизмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биоло-гический круговорот.

Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы.

Это особенно относится к ядо-витым газообразным веществам - метану, оксиду серы (IV), ок-сиду углерода (II), оксиду азота (IV), сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воз-дух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропоген-ный: работа различных промышленных предприятий и транспорта, эрозия почв и т.

п. Оксид серы (SО2), например, ядовит для рас-тений даже в концентрациях от одной пятидесятитысячной до од-ной миллионной от объема воздуха.. Некоторые виды растений особо чувствительны к S02 и служат чутким индикатором его накопления в воздухе (на-пример, лишайники.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения - разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим, скелетом.

Кроме того, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры. Жизнь во взвешенном, состоянии в воздухе невозможна. Правда, множество микроорганизмов и животных, споры, семена и пыльца растений регулярно присутствуют в воздухе и разносят-ся воздушными течениями(анемохория), многие животные способны к активно-му полету, однако у всех этих видов основная функция их жиз-ненного цикла - размножение - осуществляется на поверхности земли.

Для большинства из них пребывание в воздухе связано только с расселением или поиском добычи.

Ветер оказывает лимитирующее воздействие на активность и даже распространение организмов. Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. В открытых горных местообитаниях ветер лимитирует рост растений, приводит к искривлению растений с наветренной стороны.

Кроме того, ветер усиливает эвапотранспирацию в условиях низкой влажности. Большое значение имеют бури , хотя их действие сугубо локально. Ураганы, да и обычные ветры, способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Давление , по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт.,ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального.

Низкое дав-ление может ограничивать распространение видов в горах.

Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения часто-ты дыхания. Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.

Наземно-воздушная среда – самая сложная по экологическим условиям. Жизнь на суше потребовала таких приспособлений, которые оказались возможными лишь при достаточно высоком уровне организации растений и животных.

4.2.1. Воздух как экологический фактор для наземных организмов

Низкая плотность воздуха определяет его малую подъемную силу и незначительную спорность. Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения – разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим скелетом. Кроме того, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры. Жизнь во взвешенном состоянии в воздухе невозможна.

Правда, множество микроорганизмов и животных, споры, семена, плоды и пыльца растений регулярно присутствуют в воздухе и разносятся воздушными течениями (рис. 43), многие животные способны к активному полету, однако у всех этих видов основная функция их жизненного цикла – размножение – осуществляется на поверхности земли. Для большинства из них пребывание в воздухе связано только с расселением или поиском добычи.

Рис. 43. Распределение членистоногих воздушного планктона по высоте (по Дажо, 1975)

Малая плотность воздуха обусловливает низкую сопротивляемость передвижению. Поэтому многие наземные животные использовали в ходе эволюции экологические выгоды этого свойства воздушной среды, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий. Летают наземные животные в основном с помощью мускульных усилий, но некоторые могут и планировать за счет воздушных течений.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов.

Анемофилия – древнейший способ опыления растений. Ветром опыляются все голосеменные, а среди покрытосеменных анемофильные растения составляют примерно 10 % всех видов.

Анемофилия наблюдается в семействах буковых, березовых, ореховых, вязовых, коноплевых, крапивных, казуариновых, маревых, осоковых, злаков, пальм и во многих других. Ветроопыляемые растения имеют целый ряд приспособлений, улучшающих аэродинамические свойства их пыльцы, а также морфологические и биологические особенности, обеспечивающие эффективность опыления.

Жизнь многих растений полностью зависит от ветра, и расселение совершается с его помощью. Такая двойная зависимость наблюдается у елей, сосен, тополей, берез, вязов, ясеней, пушиц, рогозов, саксаулов, джузгунов и др.

У многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т. п. Пассивно переносимые потоками воздуха организмы получили в совокупности названиеаэропланктона по аналогии с планктонными обитателями водной среды. Специальные адаптации для пассивного полета – очень мелкие размеры тела, увеличение его площади за счет выростов, сильного расчленения, большой относительной поверхности крыльев, использование паутины и т. п. (рис. 44). Анемохорные семена и плоды растений обладают также либо очень мелкими размерами (например, семена орхидей), либо разнообразными крыловидными и парашютовидными придатками, увеличивающими их способность к планированию (рис. 45).

Рис. 44. Приспособления к переносу воздушными потоками у насекомых:

1 – комарик Cardiocrepis brevirostris;

2 – галлица Porrycordila sp.;

3 – перепончатокрылое Anargus fuscus;

4 – хермес Dreyfusia nordmannianae;

5 – личинка непарного шелкопряда Lymantria dispar

Рис. 45. Приспособления к переносу ветром у плодов и семян растений:

1 – липа Tilia intermedia;

2 – клен Acer monspessulanum;

3 – береза Betula pendula;

4 – пушица Eriophorum;

5 – одуванчик Taraxacum officinale;

6 – рогоз Typha scuttbeworhii

В расселении микроорганизмов, животных и растений основную роль играют вертикальные конвекционные потоки воздуха и слабые ветры. Сильные ветры, бури и ураганы также оказывают существенное экологическое воздействие на наземные организмы.

Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт. ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального. Низкое давление может ограничивать распространение видов в горах. Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.

В целом все наземные организмы гораздо более стенобатны, чем водные, так как обычные колебания давления в окружающей их среде составляют доли атмосферы и даже для поднимающихся на большую высоту птиц не превышают 1 / 3 нормального.

Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов чрезвычайно важны ее химические особенности. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1 %, кислород – 21,0, аргон – 0,9, углекислый газ – 0,035 % по объему) благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содержания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т. п.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточные изменения содержания углекислоты в приземных слоях, связанные с ритмом фотосинтеза растений. Сезонные обусловлены изменениями интенсивности дыхания живых организмов, преимущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко.

В природе основным источником углекислоты является так называемое почвенное дыхание. Почвенные микроорганизмы и животные дышат очень интенсивно. Углекислый газ диффундирует из почвы в атмосферу, особенно энергично во время дождя. Много его выделяют почвы умеренно влажные, хорошо прогреваемые, богатые органическими остатками. Например, почва букового леса выделяет СО 2 от 15 до 22 кг/га в час, а неудобренная песчаная всего 2 кг/га.

В современных условиях мощным источником поступления дополнительных количеств СО 2 в атмосферу стала деятельность человека по сжиганию ископаемых запасов топлива.

Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд прокариотических организмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биологический круговорот.

Рис. 46. Склон горы с уничтоженной растительностью из-за выбросов сернистого газа окрестными промышленными предприятиями

Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы. Это особенно относится к ядовитым газообразным веществам – метану, оксиду серы, оксиду углерода, оксиду азота, сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воздух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропогенный: работа различных промышленных предприятий и транспорта, эрозия почв и т. п. Оксид серы (SО 2), например, ядовит для растений даже в концентрациях от одной пятидесятитысячной до одной миллионной от объема воздуха. Вокруг промышленных центров, загрязняющих атмосферу этим газом, погибает почти вся растительность (рис. 46). Некоторые виды растений особо чувствительны к SО 2 и служат чутким индикатором его накопления в воздухе. Например, многие лишайники погибают даже при следах оксида серы в окружающей атмосфере. Присутствие их в лесах вокруг крупных городов свидетельствует о высокой чистоте воздуха. Устойчивость растений к примесям в воздушной среде учитывают при подборе видов для озеленения населенных пунктов. Чувствительны к задымлению, например, обыкновенная ель и сосна, клен, липа, береза. Наиболее устойчивы туя, тополь канадский, клен американский, бузина и некоторые другие.

4.2.2. Почва и рельеф. Погодные и климатические особенности наземно-воздушной среды

Эдафические факторы среды. Свойства грунта и рельеф местности также влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяют названиемэдафические факторы среды (от греч. «эдафос» – основание, почва).

Характер корневой системы растений зависит от гидротермического режима, аэрации, сложения, состава и структуры почвы. Например, корневые системы древесных пород (березы, лиственницы) в районах с многолетней мерзлотой располагаются на небольшой глубине и распростерты вширь. Там, где нет многолетней мерзлоты, корневые системы этих же растений менее распростерты и проникают вглубь. У многих степных растений корни могут доставать воду с большой глубины, в то же время у них много и поверхностных корней в гумусированном горизонте почвы, откуда растения поглощают элементы минерального питания. На переувлажненной, плохо аэрированной почве в мангровых зарослях многие виды имеют специальные дыхательные корни – пневматофоры.

Можно выделить целый ряд экологических групп растений по отношению к разным свойствам почв.

Так, по реакции на кислотность почвы различают: 1) ацидофильные виды – растут на кислых почвах с рН менее 6,7 (растения сфагновых болот, белоус); 2)нейтрофильные – тяготеют к почвам с рН 6,7–7,0 (большинство культурных растений); 3)базифильные – растут при рН более 7,0 (мордовник, лесная ветреница); 4)индифферентные – могут произрастать на почвах с разным значением рН (ландыш, овсяница овечья).

По отношению к валовому составу почвы различают: 1) олиготрофные растения, довольствующиеся малым количеством зольных элементов (сосна обыкновенная); 2)эвтрофные, нуждающиеся в большом количестве зольных элементов (дуб, сныть обыкновенная, пролесник многолетний); 3)мезотрофные, требующие умеренного количества зольных элементов (ель обыкновенная).

Нитрофилы – растения, предпочитающие почвы, богатые азотом (крапива двудомная).

Растения засоленных почв составляют группу галофитов (солерос, сарсазан, кокпек).

Некоторые виды растений приурочены к разным субстратам: петрофиты растут на каменистых почвах, апсаммофиты заселяют сыпучие пески.

Рельеф местности и характер грунта влияют на специфику передвижения животных. Например, копытные, страусы, дрофы, живущие на открытых пространствах, нуждаются в твердом грунте для усиления отталкивания при быстром беге. У ящериц, обитающих на сыпучих песках, пальцы окаймлены бахромкой из роговых чешуй, которая увеличивает поверхность опоры (рис. 47). Для наземных обитателей, роющих норы, плотные грунты неблагоприятны. Характер почвы в ряде случаев влияет на распределение наземных животных, роющих норы, зарывающихся в грунт для спасения от жары или хищников либо откладывающих в почву яйца и т. д.

Рис. 47. Вееропалый геккон – обитатель песков Сахары: А – вееропалый геккон; Б – нога геккона

Погодные особенности. Условия жизни в наземно-воздушной среде осложняются, кроме того,погодными изменениями. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности до высоты примерно 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т. п. Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, что существенно усложняет условия существования наземных организмов. На жизнь водных обитателей погода влияет в значительно меньшей степени и лишь на население поверхностных слоев.

Климат местности. Многолетний режим погоды характеризуетклимат местности. В понятие климата входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонения от него и их повторяемость. Климат определяется географическими условиями района.

Зональное разнообразие климатов осложняется действием муссонных ветров, распределением циклонов и антициклонов, влиянием горных массивов на движение воздушных масс, степенью удаления от океана (континентальность) и многими другими местными факторами. В горах наблюдается климатическая поясность, во многом аналогичная смене зон от низких широт к высоким. Все это создает чрезвычайное разнообразие условий жизни на суше.

Для большинства наземных организмов, особенно мелких, важен не столько климат района, сколько условия их непосредственного местообитания. Очень часто местные элементы среды (рельеф, экспозиция, растительность и т. п.) так изменяют в конкретном участке режим температуры, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. В каждой зоне микроклиматы очень разнообразны. Можно выделить микроклиматы сколь угодно малых участков. Например, особый режим создается в венчиках цветков, что используют обитающие там насекомые. Широко известны различия температуры, влажности воздуха и силы ветра на открытом пространстве и в лесу, в травостое и над оголенными участками почвы, на склонах северной и южной экспозиций и т. п. Особый устойчивый микроклимат возникает в норах, гнездах, дуплах, пещерах и других закрытых местах.

Осадки. Помимо водообеспечения и создания запасов влаги, они могут играть и другую экологическую роль. Так, сильные ливневые дожди или град оказывают иногда механическое воздействие на растения или животных.

Особенно многообразна экологическая роль снегового покрова. Суточные колебания температур проникают в толщу снега лишь до 25 см, глубже температура почти не изменяется. При морозах в -20-30 °C под слоем снега в 30–40 см температура лишь ненамного ниже нуля. Глубокий снежный покров защищает почки возобновления, предохраняет от вымерзания зеленые части растений; многие виды уходят под снег, не сбрасывая листвы, например ожика волосистая, вероника лекарственная, копытень и др.

Рис. 48. Схема телеметрического изучения температурного режима рябчика, находящегося в подснежной лунке (по А. В. Андрееву, А. В. Кречмару, 1976)

Мелкие наземные зверьки ведут и зимой активный образ жизни, прокладывая под снегом и в его толще целые галереи ходов. Для ряда видов, питающихся подснежной растительностью, характерно даже зимнее размножение, которое отмечено, например, у леммингов, лесной и желтогорлой мыши, ряда полевок, водяной крысы и др. Тетеревиные птицы – рябчики, тетерева, тундряные куропатки – зарываются в снег на ночевку (рис. 48).

Крупным животным зимний снеговой покров мешает добывать корм. Многие копытные (северные олени, кабаны, овцебыки) питаются зимой исключительно подснежной растительностью, и глубокий снежный покров, а особенно твердая корка на его поверхности, возникающая в гололед, обрекают их на бескормицу. При кочевом скотоводстве в дореволюционной России огромным бедствием в южных районах был джут – массовый падеж скота в результате гололедицы, лишавшей животных корма. Передвижение по рыхлому глубокому снегу также затруднено для животных. Лисы, например, в снежные зимы предпочитают в лесу участки под густыми елями, где тоньше слой снега, и почти не выходят на открытые поляны и опушки. Глубина снежного покрова может ограничивать географическое распространение видов. Например, настоящие олени не проникают на север в те районы, где толща снега зимой более 40–50 см.

Белизна снежного покрова демаскирует темных животных. В возникновении сезонной смены окраски у белой и тундряной куропаток, зайца-беляка, горностая, ласки, песца, по-видимому, большую роль сыграл отбор на маскировку под цвет фона. На Командорских островах наряду с белыми много голубых песцов. По наблюдениям зоологов, последние держатся преимущественно вблизи темных скал и незамерзающей прибойной полосы, а белые предпочитают участки со снежным покровом.

Особенностью наземно-воздушной среды является то, что организмы, обитающие здесь, окружены воздухом, который представляет собой смесь газов, а не их соединения. Воздух как экологический фактор характеризуется постоянством состава - азота в нем содержится 78,08%, кислорода - около 20,9%, аргона - около 1%, углекислого газа - 0,03%. За счет диоксида углерода и воды синтезируется органическое вещество и выделяется кислород. При дыхании происходит реакция, обратная фотосинтезу - потребление кислорода. Кислород появился на Земле примерно 2 млрд. лет назад, когда происходило формообразование поверхности нашей планеты при активной вулканической деятельности. Постепенное увеличение содержания кислорода происходило в течение последних 20 млн. лет. Главную роль в этом играло развитие растительного мира суши и океана. Без воздуха не могут существовать ни растения, ни животные, ни аэробные микроорганизмы. Большинство животных в этой среде передвигаются по твердому субстрату - почве. Воздух как газообразная среда жизни характеризуется низкими показателями влажности, плотности и давления, а также высоким содержанием кислорода. Действующие в наземно-воздушной среде экологические факторы отличаются рядом специфических особенностей: свет здесь по сравнению с другими средами интенсивнее, температура претерпевает более сильные колебания, влажность значительно изменяется в зависимости от географического положения, сезона и времени суток.

Приспособления к воздушной среде.

Наиболее специфичны среди обитателей воздушной среды, конечно летающие формы. Уже особенности внешности организма позволяют заметить его приспособления к полету. Прежде всего, об этом говорит форма его тела.

Форма тела:

  • · обтекаемость тела (птица),
  • · наличие плоскостей для опоры на воздух (крылья, парашют),
  • · облегченная конструкция (полые кости),
  • · наличие крыльев и иных приспособлений для полета (летательные перепонки, например),
  • · облегчение конечностей (укорочение, уменьшение массы мышц).

У бегающих животных тоже появляются отличительные особенности, по которым легко узнать хорошего бегуна, а если он передвигается прыжками, то прыгуна:

  • · мощные, но легкие конечности (лошадь),
  • · уменьшение пальцев на ногах (лошадь, антилопа),
  • · очень мощные задние конечности и укороченные передние (заяц, кенгуру),
  • · защитные роговые копыта на пальцах (копытные, мозоленогие).

Лазающие организмы имеют самые различные приспособления. Они могут быть общими для растений и животных, а могут и различаться. Для лазанья может быть использована и своеобразная форма тела:

  • · тонкое длинное тело, петли которого могут служить опорой при лазании (змея, лиана),
  • · длинные гибкие хватательные или цепляющиеся конечности, а возможно, и такой же хвост (обезьяны);
  • · выросты тела - усики, крючки, корешки (горох, ежевика, плющ);
  • · острые коготки на конечностях или длинные когти, загнутые крючком или сильные хватательные пальцы (белка, ленивец, обезьяна);
  • · мощные мышцы конечностей, позволяющие подтягивать тело и перебрасывать его с ветки на ветку (орангутанг, гиббон).

Некоторые организмы приобрели своеобразную универсальность приспособлений сразу к двум. У лазающих форм возможно и сочетание признаков лазанья и полета. Многие из них могут, забравшись на высокое дерево совершать длинные прыжки-полеты. Это сходные приспособления у жителей одной среды обитания. Часто встречаются животные способные к быстрому бегу и полету, одновременно несущие оба набора этих адаптаций.

Встречаются сочетания приспособительных признаков у организма к жизни в различных средах. Такие параллельные наборы адаптаций несут все земноводные животные. Приспособления к полету имеют и некоторые плавающие чисто водные организмы. Вспомним летучих рыб или даже кальмаров. Для решения одной экологической задачи могут быть использованы разные адаптации. Так, средством термоизоляции у медведей, песцов служит густой мех, покровительственная окраска. Благодаря покровительственной окраске организм становится трудно различимым и, следовательно, защищенным от хищников. Яйца птиц, откладываемые на песок или на землю, имеют серый и бурый цвет с пятнышками, сходный с цветом окружающей почвы. В тех случаях, когда яйца недоступны для хищников, они обычно лишены окраски. Гусеницы бабочек часто зеленые, под цвет листьев, или темные, под цвет коры или земли. Животные пустынь, как правило, имеют желто-бурую или песочно-желтую окраску. Однотонная покровительственная окраска свойственна как насекомым (саранча) и мелким ящерицам, так и крупным копытным (антилопы) и хищникам (лев). Расчленяющая покровительственная окраска в виде чередования на теле светлых и темных полос и пятен. Зебры и тигр плохо видны уже на расстоянии 50 - 40 м из-за совпадения полос на теле с чередованием света и тени в окружающей местности. Расчленяющая окраска нарушает представления о контурах тела, отпугивающая (предостерегающая) окраска - также обеспечивает защиту организмов от врагов. Яркая окраска обычно характерна для ядовитых животных и предупреждает хищников о несъедобности объекта их нападения. Эффективность предостерегающей окраски послужила причиной очень интересного явления-подражания - мимикрии. Образования в виде твердого хитинового покрова у членистоногих (жуки, крабы), раковин у моллюсков, чешуи у крокодилов, панциря у броненосцев и черепах хорошо предохраняют их от многих врагов. Этому же служат иглы ежа и дикобраза. Совершенствование аппарата движения, нервной системы, органов чувств, развитие средств нападения у хищных. Поразительно чувствительны органы химического чувства насекомых. Самцов непарного шелкопряда привлекает запах ароматической железы самки с расстояния 3 км. У некоторых бабочек чувствительность рецепторов вкуса в 1000 раз превосходит чувствительность рецепторов человеческого языка. Ночные хищники, например совы, прекрасно видят в темноте. У некоторых змей хорошо развита способность к термолокации. Они различают на расстоянии объекты, если разница их температур составляет всего 0,2 °С.

Сравнение основных экологических факторов, играющих лимитирующую роль в наземно-воздушной и водной средах

Составлено по: Степановских А.С.. Указ. соч. С. 176.

Большие колебания температуры во времени и пространстве, а также хорошая обеспеченность кислородом обусловили появление организмов с постоянной температурой тела (теплокровных). Для поддержания стабильности внутренней среды теплокровных организмов, населяющих наземно-воздушную среду (наземные организмы ), требуются повышенные энергетические затраты.

Жизнь в наземной среде возможна лишь при высоком уровне организации растений и животных, адаптированных к специфическим влияниям важнейших экологических факторов этой среды.

В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры и влажности в зависимости от географического положения, сезона и времени суток.

Рассмотрим общую характеристику наземно-воздушной среды обитания.

Для газообразной среды обитания характерны низкие значения влажности, плотности и давления, высокое содержание кислорода, что определяет особенности дыхания, водообмена, передвижения и образа жизни организмов. Свойства воздушной среды влияют на строение тел наземных животных и растений, их физиологические и поведенческие особенности, а также усиливают или ослабляют действие других экологических факторов.

Газовый состав воздуха отличается относительно большим постоянством (кислород - 21 %, азот - 78 %, углекислый газ - 0,03 %) как на протяжении суток, так и в разные периоды года. Это обусловлено интенсивным перемешиванием слоев атмосферы.

Поглощение кислорода организмами из внешней среды происходит всей поверхностью тела (у простейших, червей) или специальными органами дыхания - трахеями (у насекомых), легкими (у позвоночных). У организмов, живущих в условиях постоянного недостатка кислорода, имеются соответствующие приспособления: повышенная кислородная емкость крови, более частые и глубокие дыхательные движения, большой объем легких (у обитателей высокогорья, птиц).

Одна из важнейших и преобладающих форм первостепенного биогенного элемента углерода в природе - углекислый газ (диоксид углерода). Припочвенные слои атмосферы обычно более богаты углекислым газом, чем ее слои на уровне крон деревьев, и это в определенной мере компенсирует недостаток света для мелких растений, живущих под пологом леса.

Углекислый газ поступает в атмосферу главным образом в результате естественных процессов (дыхание животных и растений. Процессы горения, извержении вулканов, деятельность почвенных микроорганизмов и грибов) и хозяйственной деятельности человека (сжигание горючих веществ в области теплоэнергетики, на промышленных предприятиях и на транспорте). Количество углекислого газа в атмосфере изменяется в течение суток и по сезонам. Суточные изменения связаны с ритмом фотосинтеза растений, а сезонные - с интенсивностью дыхания организмов, преимущественно почвенных микроорганизмов.

Низкая плотность воздуха обусловливает малую подъемную силу, в связи с чем наземные организмы имеют ограниченные размеры и массу и обладают собственной опорной системой, поддер­живающей тело. У растений это разнообразные механические ткани, а у животных - твердый или (реже) гидростатический скелет. Многие виды наземных организмов (насекомые и птицы) приспособились к полету. Однако для подавляющего большинства орга­низмов (за исключением микроорганизмов) пребывание в воздухе связано только с расселением или поиском пищи.

С плотностью воздуха также связано сравнительно низкое давление на суше. Наземно-воздушная среда обладает низким атмосферным давлением и низкой плотностью воздуха, поэтому большинство активно летающих насекомых и птиц занимают нижнюю зону - 0...1000 м. Однако отдельные обитатели воздушной среды могут постоянно жить и на высотах 4000...5000 м (орлы, кондоры).

Подвижность воздушных масс способствует быстрому перемешиванию атмосферы и равномерному распределению различных газов, например кислорода и углекислого газа, вдоль поверхности Земли. В нижних слоях атмосферы постоянно происходят вертикальные (восходящие и нисходящие) и горизонтальные перемещения воздушных масс различной силы и направления. Благодаря такой подвижности воздуха возможен пассивный полет ряда организмов: спор, пыльцы, семян и плодов растений, мелких насекомых, пауков и т. п.

Световой режим создается суммарной солнечной радиацией, достигающей земной поверхности. От световых условий конкретного местообитания зависят морфологические, физиологические и другие признаки наземных организмов.

Световые условия практически везде в наземно-воздушной среде благоприятны для организмов. Главную роль играет не само по себе освещение, а суммарная величина солнечной радиации. В тропическом поясе суммарная радиация в течение года постоянна, но в умеренных широтах длина светового дня и интенсивность солнечной радиации зависят от времени года. Большое значение имеют также прозрачность атмосферы и угол падения солнечных лучей. Из поступающей фотосинтетически активной радиации 6-10% отражается от поверхности различных насаждений (рис. 9.1). Цифрами на рисунке обозначена относительная величина солнечной радиации в процентах от суммарной величины на верхней границе растительного сообщества. При разных погодных условиях до поверхности Земли доходит 40...70 % солнечной радиации, поступающей на верхнюю границу атмосферы. Деревья, кустарники, посевы растений затеняют местность, создают особый микроклимат, ослабляя солнечную радиацию.

Рис. 9.1 . Ослабление солнечной радиации (%):

а - в редком сосновом лесу; б - в посевах кукурузы

У растений наблюдается непосредственная зависимость от интенсивности светового режима: они растут, где позволяют климатические и почвенные условия, приспосабливаясь к световым условиям данного место обитания. Все растения по отношению к уровню освещенности делятся на три группы: светолюбивые, тенелюбивые и теневыносливые. Светолюбивые и тенелюбивые растения различаются по величине экологического оптитимума освещенности (рис. 9.2).

Светолюбивые растения - растения открытых, постоянно освещаемых местообитаний, оптимум жизнедеятельности которых наблюдается в условиях, полного солнечного освещения (степные и луговые злаки, растения тундр и высокогорий, прибрежные растения, большинство культурных растений открытого грунта, многие сорняки).

Рис. 9.2 . Экологические оптимумы отношения к свету растений трех видов: 1- тенелюбивого; 2 - светолюбивого; 3 - теневыносливого

Тенелюбивые растения - растения, произрастающие только в условиях сильного затенения, которые в условиях сильной освещенности не растут. В процессе эволюции эта группа растений адаптировалась к условиям, свойственным нижним затененным ярусам сложных растительных сообществ - темнохвойных и широколиственных лесов, влажных тропических лесов и т.п. Тенелюбивость этих растений обычно сочетается с высокой потребностью в воде.

Теневыносливые растения лучше растут и развиваются при полной освещенности, однако способны адаптироваться и к условиям разного уровня затемнения.

У представителей животного мира отсутствует непосредственная зависимость от светового фактора, которая наблюдается у растений. Тем не менее свет в жизни животных играет большую роль при зрительной ориентации в пространстве.

Мощным фактором, регулирующим жизненный цикл ряда животных, служит длина светового дня (фотопериод). Реакция на фотопериод синхронизует активность организмов с временами года. Например, многие млекопитающие начинают готовиться к зимней спячке задолго до наступления холодов, а перелетные птицы улетают на юг уже и в конце лета.

Температурный режим играет гораздо большую роль в жизни обитателей суши, чем в жизни обитателей гидросферы, поскольку отличительной чертой наземно-воздушной среды является большой диапазон температурных колебаний. Температурный режим отличается значительными колебаниями во времени и пространстве и обусловливает активность протекания биохимических процессов. Биохимические и морфофизиологические приспособления растений и животных предназначены для защиты организмов от неблагоприятного воздействия колебаний температур.

Каждый вид имеет собственный диапазон наиболее благоприятных для него значений температуры, который называется температурным оптимумом вида. Разница диапазонов предпочитаемых значений температуры у разных видов очень велика. Наземные организмы обитают в более широком температурном диапазоне, чем обитатели гидросферы. Нередко ареалы эвритермных видов простираются с юга на север через несколько климатических зон. К примеру, серая жаба населяет пространство от Северной Африки до Северной Европы. К эвритермным животным относятся многие насекомые, земноводные, а из млекопитающих - лисица, волк, пума и др.

Длительно покоящиеся (латентные ) формы организмов, такие, как споры некоторых бактерий, споры и семена растений, способны выдерживать значительно отклоняющиеся от нормы значения температур. Попадая в благоприятные условия и достаточную питательную среду, эти клетки могут вновь стать активными и начать размножаться. Приостановка всех жизненных процессов организма носит название анабиоза . Из состояния анабиоза организмы могут возвратиться к нормальной активности в том случае, если не нарушена структура макромолекул в их клетках.

Температура непосредственно влияет на рост и развитие растений. Являясь организмами неподвижными, растения должны существовать при том температурном режиме, который создается в местах их произрастания. По степени адаптации к температурным условиям все виды растений можно разделить на следующие группы:

- морозоустойчивые - растения, произрастающие в областях с сезонным климатом, с холодными зимами. Во время сильных морозов надземные части деревьев и кустарников промерзают, но сохраняют жизнеспособность, накапливая в своих клетках и тканях вещества, которые связывают воду (различные сахара, спирты некоторые аминокислоты);

- неморозостойкие - растения, переносящие низкие температуры, но гибнущие как только в тканях начинает образовываться лед (некоторые вечнозеленые субтропические виды);

- нехолодостойкие - растения, которые сильно повреждаются или гибнут при температурах выше точки замерзания воды (растения дождевых тропических лесов);

- теплолюбивые - растения сухих местообитаний с сильной инсоляцией (солнечной радиацией), которые переносят получасовое нагревание до +60 °С (растения степей, саванн, сухих субтропиков);

- пирофиты - растения, устойчивые к пожарам, когда температура кратковременно повышается до сотен градусов Цельсия. Это растения саванн, сухих жестколистных лесов. Они имеют толстую кору, пропитанную огнеупорными веществами, надежно защищающую внутренние ткани. Плоды и семена пирофитов имеют толстые, одревесневшие покровы, которые растрескиваются при пожаре, что помогает семенам попасть в почву.

По сравнению с растениями животные обладают более разнообразными возможностями регулировать (постоянно или временно) температуру собственного тела. Одно из важных приспособлений животных (млекопитающих и птиц) к температурным колебаниям - это способность к терморегуляции организма, их теплокровность, благодаря чему высшие животные относительно независимы от температурных условий окружающей среды.

В мире животных наблюдается связь размеров и пропорции тела организмов с климатическими условиями их обитания. В пределах вида или однородной группы близких видов животные с более крупными размерами тела распространены в более холодных областях. Чем крупнее животное, тем легче ему поддерживать постоянную температуру. Так, среди представителей пингвинов самый мелкий пингвин - пингвин галапагосский - обитает в экваториальных районах, а самый крупный - пингвин императорский - в материковой зоне Антарктиды.

Влажность становится важным лимитирующим фактором на суше, так как дефицит влаги - одна из наиболее существенных особенностей наземно-воздушной среды. Наземные организмы постоянно сталкиваются с проблемой потери воды и нуждаются в ее периодическом поступлении. В процессе эволюции наземных организмов вырабатывались характерные приспособления к добыванию и сохранению влаги.

Режим влажности характеризуют осадки, влажность почвы и воздуха. Дефицит влаги - одна из наиболее существенных особенностей наземно-воздушной среды жизни. С экологической точки зрения вода служит лимитирующим фактором в наземных местообитаниях, так как ее количество подвержено сильным колебаниям. Режимы влажности среды на суше разнообразны: от полного и постоянного насыщения воздуха водяными парами (тропический пояс) до практически полного отсутствия влаги в сухом воздухе пустынь.

Главным источником воды для растительных организмов служит почва.

Помимо поглощения почвенной влаги корнями растения также способны поглощать воду, выпадающую в виде небольших дождей, туманов, парообразную влагу воздуха.

Большую часть поглощенной воды растительные организмы теряют в результате транспирации, т. е. испарения воды с поверхности растений. Растения защищаются от обезвоживания, либо запасая воду и препятствуя испарению (кактусы), либо увеличивая долю подземных частей (корневых систем) в общем объеме растительного организма. По степени адаптации к тем или иным условиям влажности все растения подразделяются на группы:

- гидрофиты - наземно-водные растения, произрастающие и свободно плавающие в водной среде (тростник по берегам водоемов, калужница болотная и другие растения на болотах);

- гигрофиты - наземные растения в районах с постоянно высокой влажностью (обитатели тропических лесов - эпифитные папоротники, орхидеи и др.)

- ксерофиты - наземные растения, приспособившиеся к значительным сезонным колебаниям содержания влаги в почве и воздухе (обитатели степей, полупустынь и пустынь - саксаул, верблюжья колючка);

- мезофиты - растения, занимающие промежуточное положение между гигрофитами и ксерофитами. Наиболее распространены мезофиты в умеренно влажных зонах (береза, рябина, многие луговые и лесные травы и др.).

Погодные и климатические особенности характеризуются суточными, сезонными и многолетними колебаниями температуры, влажности воздуха, облачности, осадков, силы и направления ветра и т.д. что определяет разнообразие условий жизни обитателей наземной среды. Климатические особенности зависят от географических условий района, однако часто более важен микроклимат непосредственного местообитания организмов.

В наземно-воздушной среде условия жизни осложняются существованием погодных изменений . Погода - это непрерывно меняющееся состояние нижних слоев атмосферы примерно до высоты 20 км (граница тропосферы). Изменчивость погоды - это постоянное изменение таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т. д.

Многолетний режим погоды характеризует климат местности . В понятие климата входят не только среднемесячные и среднегодовые значения метеорологических параметров (температура воздуха, влажность, суммарная солнечная радиация и т. д.), но и закономерности их суточных, месячных и годовых изменений, а также их повторяемость. Основные климатические факторы - это температура и влажность. Следует отметить, что растительность оказывает значительное влияние на уровень значений климатических факторов. Так, под пологом леса влажность воздуха всегда выше, а колебания температуры меньше, чем на открытой местности. Различается и световой режим этих мест.

Почва служит твердой опорой для организмов, которую не может им обеспечить воздух. Кроме того, корневая система поставляет растениям водные растворы необходимых минеральных соединений из почвы. Важное значение для организмов имеют химические и физические свойства почвы.

Рельеф местности создает разнообразие условий жизни для наземных организмов, определяя микроклимат и ограничивая свободное перемещение организмов.

Влияние почвенно-климатических условий на организмы привело к образованию характерных природных зон - биомов . Так называют наиболее крупные наземные экосистемы, соответствующие основным климатическим зонам Земли. Особенности больших биомов определяются в первую очередь группировкой входящих в них растительных организмов. Каждой из физико-географических зон присущи определенные соотношения тепла и влаги, водный и световой режим, тип почв, группировки животных (фауна) и растений (флора). Географическое распределение биомов носит широтный характер и связано с изменением климатических факторов (температура и влажность) от экватора к полюсам. При этом наблюдается определенная симметрия в распределении различных биомов обоих полушарий. Основные биомы Земли: тропический лес, тропическая саванна, пустыня, степь умеренной зоны, листопадный лес умеренной зоны, хвойный лес (тайга), тундра, арктическая пустыня.

Почвенная среда жизни . Среди рассматриваемых нами четырех сред жизни почва выделяется тесной связью живого и неживого компонентов биосферы. Почва - это не только среда обитания организмов, но и продукт их жизнедеятельности. Можно считать, что почва возникла в результате совместного действия климатических факторов и организмов, особенно растений, на материнскую породу, т. е. на минеральные вещества верхнею слоя земной коры (песок, глину, камни и пр.).

Итак, почвой называют слой вещества, лежащий поверх горных пород, состоящий из исходного материала - подстилающего минерального субстрата - и органической добавки, в которой организмы и продукты их жизнедеятельности перемешаны с мелкими частицами измененного исходного материала. Структура и пористость почвы во многом определяют доступность питательных веществ растениям и почвенным животным.

В состав почвы входят четыре важных структурных компонента:

Минеральная основа (50...60 % общего состава почвы);

Органическое вещество (до 10 %);

Воздух (15...25%);

Вода (25...35%).

Органическое вещество почвы, которое образуется при разложении мертвых организмов или их частей (например, опавших листьев), называется гумусом , который образует верхний плодородный слой почвы. Важнейшее свойство почвы - плодородие - зависит от мощности гумусового слоя.

Каждому типу почв соответствуют определенный животный мир и определенная растительность. Совокупность почвенных организмов обеспечивает непрерывный круговорот веществ в почве, в том числе образование гумуса.

Почвенная среда обитания имеет свойства, сближающие ее с водной и наземно-воздушной средами. Как и в водной среде, в почвах невелики колебания температуры. Амплитуды ее значений быстро затухают с увеличением глубины. При избытке влаги или_ углекислоты повышается вероятность дефицита кислорода. Сходство с наземно-воздушной средой обитания проявляется через наличие пор, заполненных воздухом. К специфическим свойствам, присущим только почве, относится высокая плотность. Большую роль в образовании почвы играют организмы и продукты их жизнедеятельности. Почва наиболее насыщенная живыми организмами часть биосферы.

В почвенной среде лимитирующими факторами обычно являются недостаток тепла и недостаток или избыток влаги. Лимитирующими факторами могут быть также и недостаток кислорода или избыток углекислоты. Жизнь многих почвенных организмов тесно связана с их размерами. Одни свободно передвигаются в почве, другим необходимо разрыхлять ее для движения и поиска пищи.

Контрольные вопросы и задания

1.В чем особенность наземно-воздушной среды как экологического пространства?

2. Какими приспособлениями для жизни на суше обладают организмы?

3. Назовите экологические факторы, наиболее значимые для

наземных организмов.

4. Охарактеризуйте особенности почвенной среды обитания.