Как определить тип гибридизации атома. Общее представление о гибридизации. Что такое гибрид

Задача 261.
Какие типы гибридизации АО углерода соответствуют образованию молекул СН 4 , С 2 Н 6 , С 2 Н 4 , С 2 Н 2 ?
Решение:
а) В молекулах СН 4 и С 2 Н 6 валентный электронный слой атома углерода содержит четыре электронных пары:

Поэтому электронные облака атома углерода в молекулах СН 4 , С 2 Н 6 будут максимально удалены друг от друга при sp3-гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле СН 4 все вершины тетраэдра будут заняты атомами водорода, так что молекула СН4 имеет тетраэдрическую конфигурацию с атомом углерода в центре тетраэдра. В молекуле С 2 Н 6 атомы водорода занимают три вершины тетраэдра, а к четвёртой вершине направлено общее электронное облако другого атома углерода, т.е. два атома углерода соединены друг с другом. Это можно представить схемами:

б) В молекуле С 2 Н 4 валентный электронный слой атома углерода, как и в молекулах СН 4 , С 2 Н 6 . содержит четыре электронные пары:

При образовании С 2 Н 4 три ковалентные связи образованы по обычному механизму, т.е. являются - связями, и одна - - связь. При образовании молекулы С 2 Н 4 каждый атом углерода с двумя атомами водорода - связями и друг с другом двумя связями, одной - и одной - связями. Гибридные облака, соответствующие данному типу гибридизации, располагаются в атоме углерода так, чтобы взаимодействие между электронами было минимальным, т.е. как можно дальше друг от друга. Данное расположение атомов углерода (две двойные связи между атомами углерода) характерно для sp 2 -гибридизации АО углерода. При sp 2 -гибридизации электронные облака в атомах углерода ориентированы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. в направлениях к вершинам правильного треугольника. В молекуле этилена в образовании - связей участвуют три sp 2 -гибридные орбитали каждого атома углерода, две между двумя атомами водорода и одна со вторым атомом углерода, а - связь образуется за счёт р-электронных облаков каждого атома углерода. Структурная формула молекулы С 2 Н 4 будет иметь вид:

в) В молекуле С 2 Н 2 валентный электронный слой атома углерода содержит четыре пары электронов:

Структурная формула С 2 N 2 имеет вид:

Каждый атом углерода соединён одной электронной парой с атомом водорода и тремя электронными парами с другим атомом углерода. Таким образом, в молекуле ацетилена атомы углерода соединены друг с другом одной -связью и двум -связями. С водородом каждый атом углерода соединён -связью. В образовании - связей участвуют две sp-гибридные АО, которые расположены друг относительно друга так, что взаимодействие между ними минимальное, т.е. как можно дальше друг от друга. Поэтому при sp-гибридизации электронные облака между атомами углерода ориентированы в противоположных направлениях друг относительно друга, т.е. угол между связями С-С составляет 180 0 . Поэтому молекула С 2 Н 2 имеет линейное строение:

Задача 262.
Указать тип гибридизации АО кремния в молекулах SiH 4 и SiF 4 . Полярны ли эти молекулы?
Решение:
В молекулах SiH 4 и SiF 4 валентный электронный слой содержит четыре пары электронов:

Поэтому в обоих случаях электронные облака атома кремния будут максимально удалены друг от друга при sp 3 -гибридизации, когда их оси направлены к вершинам тетраэдра. При этом в молекуле SiH 4 все вершины тетраэдра заняты атомами водорода, а в молекуле SiF 4 – атомами фтора, так что эти молекулы имеют тетраэдрическую конфигурацию с атомом кремния в центре тетраэдра:

В тетраэдрических молекулах SiH 4 и SiF 4 дипольные моменты связей Si-H и Si-F взаимно компенсируют друг друга, так что суммарные дипольные моменты обоих молекул будут равны нулю. Эти молекулы неполярны, несмотря на полярность связей Si-H и Si-F.

Задача 263.
В молекулах SО 2 и SО 3 атом серы находится в состоянии sp 2 -гибридизации. Полярны ли эти молекулы? Какова их пространственная структура?
Решение:
При sp 2 -гибридизации гибридные облака располагаются в атоме серы в направлениях, лежащих в одной плоскости и составляющих друг с другом углы в 120 0 , т.е. направленных к вершинам правильного треугольника.

а) В молекуле SО 2 две sp 2 -гибридные АО образуют связь с двумя атомами кислорода, третья sp 2 -гибридная орбиталь будет занята свободной электронной парой. Эта электронная пара будет смещать электронную плоскость и молекула SО 2 примет форму неправильного треугольника, т.е. угол OSO не будет равен 120 0 . Поэтому молекула SО 2 будет иметь угловую форму при sp 2 -гибридизации орбиталей атома структуру:

В молекуле SО 2 взаимной компенсации дипольных моментов связей S-O не происходит; дипольный момент такой молекулы будет иметь значение больше нуля, т.е. молекула полярна.

б) В угловой молекуле SО 3 все три sp2-гибридные АО образуют связь с тремя атомами кислорода. Молекула SО 3 будет иметь форму плоского треугольника с sp 2 -гибридизацией атома серы:

В треугольной молекуле SО 3 дипольные моменты связей S-O взаимно компенсируют друг друга, так что суммарный дипольный момент будет равен нулю, молекула полярна.

Задача 264.
При взаимодействии SiF4 с HF образуется сильная кислота Н 2 SiF 6 , диссоциирующая на ионы Н + и SiF 6 2- . Может ли подобным образом протекать реакция между СF 4 и НF? Указать тип гибридизации АО кремния в ионе SiF 6 2- .
Решение:
а) При возбуждении атом кремния переходит из состояния 1s 2 2s 2 2p 6 3s 2 3p 3 в состояние 1s 2 2s 2 2p 6 3s 1 3p 4 3d 0 , а электронное строение валентных орбиталей соответствует схеме:

Четыре неспаренных электрона возбуждённого атома кремния могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2p 5), имеющими по одному неспаренному электрону с образованием молекулы SiF 4 .

При взаимодействии SiF 4 с HF образуется кислота Н 2 SiF 6 . Это возможно, потому что в молекуле SiF 4 имеются свободные 3d-орбитали, а в ионе F- (1s 2 2s 2 2p 6) свободные пары электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов каждого из двух ионов F - (HF ↔ H + + F -) и свободных 3d-орбиталей молекулы SiF 4 . При этом образуется ион SiF 6 2- , который с ионами H + образует молекулу кислоты Н 2 SiF 6 .

б) Углерод (1s 2 2s 2 2p 2) может образовать, подобно кремнию, соединение СF 4 , ног при этом валентные возможности атома углерода будут исчерпаны (нет неспаренных электронов, свободных пар электронов и свободных валентных орбиталей на валентном уровне). Схема строения валентных орбиталей возбуждённого атома углерода имеет вид:

При образовании СF 4 все валентные орбитали углерода заняты, поэтому ион образоваться не может.

В молекуле SiF 4 валентный электронный слой атома кремния содержит четыре пары электронов:

Это же наблюдается и для молекулы СF 4 . поэтому в обоих случаях электронные облака атомов кремния и углерода будут максимально удалены друг от друга при sp3-гибридизации. Когда их оси будут направлены к вершинам тетраэдра:

Инструкция

Рассмотрите молекулу простейшего предельного углеводорода метана. Его выглядит следующим образом: CH4. Пространственная модель молекулы представляет собою тетраэдр. Атом углерода образует с четырьмя атомами водорода совершенно одинаковые по длине и энергии связи. В них, согласно вышеприведенному примеру, участвуют 3 – Р электрона и 1 S – электрон, орбиталь которого стала в точности соответствовать орбиталям трех других электронов в результате произошедшей . Такой тип гибридизации называется sp^3 гибридизацией. Она присуща всем предельным .

А вот простейший представитель непредельных – этилен. Его формула выглядит следующим образом: С2Н4. Какой тип гибридизации присущ углероду в молекуле этого вещества? В результате ее образуются три орбитали в виде несимметричных «восьмерок», лежащих в одной плоскости под углом 120^0 друг к другу. Их образовали 1 – S и 2 – Р электрона. Последний 3-й Р – электрон не видоизменил свою орбиталь, то есть она осталась в виде правильной «восьмерки». Такой тип гибридизации называют sp^2 гибридизацией.

Как же образуются связи в молекуле ? Две гибридизованные орбитали каждого атома вступили во с двумя атомами водорода. Третья гибридизованная орбиталь образовала связь с такой же орбиталью другого . А оставшиеся Р – орбитали? Они «притянулись» друг к другу по обе стороны от плоскости молекулы. Между атомами углерода образовалась связь. Именно атомам с «двойной» связью присуща sp^2 .

А что происходит в молекуле ацетилена или ? Его формула выглядит следующим образом: С2Н2. В каждом атоме углерода гибридизации подвергаются только два электрона: 1 --S и 1 – Р. Остальные два сохранили орбитали в виде «правильных восьмерок», перекрывающихся» в плоскости молекулы и по обе стороны от нее. Вот поэтому такой тип гибридизации носит название sp – гибридизации. Она присуща атомам с тройной связью.

Все слова , существующие в том или ином языке, можно разделить на несколько групп. Это важно при определении как значения, так и грамматических функций слова . Отнеся его к определенному типу , вы можете видоизменять его в соответствии с правилами, даже если оно вам раньше не встречалось. Типами элементов слова рного состава языка занимается лексикология.

Вам понадобится

  • - текст;
  • - словарь.

Инструкция

Выберите слово, тип которого вы хотите определить. Принадлежность его к той или иной части речи пока не играет роли, как и форма, и функция его в предложении. Это может быть абсолютно любое слово. Если оно не указано в задании, выпишите первое попавшееся. Определите, называет ли оно предмет, качество, действие или нет. По этому параметру все слова делятся на знаменательные, местоименные, числительные, служебные и междометные. К первому типу относятся существительные, прилагательные, глаголы и . Именно они обозначают названия предметов, качеств и действий. Второй тип слов, у которых есть функция называния - местоименный. Способность называть отсутствует у , междометного и служебного типов. Это сравнительно небольшие группы слов, но они есть в каждом .

Определите, способно ли заданное слово выражать понятие. Эта функция есть у слова рных единиц знаменательного типа, ведь именно они и формируют понятийный ряд любого языка. Однако любое число тоже относится к разряду понятий, а соответственно, тоже несет в себе эту функцию. Есть она и у служебных слов, а вот у местоимений и междометий - отсутствует.

Рассмотрите, как будет слово, если оно окажется в предложении. Может ли оно являться ? Им может быть любое слово знаменательного типа. Но эта возможность есть и у , а также у числительного. А вот служебные слова играют вспомогательную роль, ни подлежащим, ни , ни второстепенными членами предложения они быть не могут, как и междометия.

Для удобства можно составить табличку из четырех столбцов шести строк. В верхней строке назовите соответствующие столбцы «Типы слов», «Называние», «Понятие» и «Способно ли быть членом предложения». В первом левом столбце запишите названия типов слов, их всего пять. Определите, какими функциями обладает заданное слово, а каких у него нет. В соответствующих графа поставьте плюсы и . Если во всех трех графах стоят плюсы, то это знаменательный тип. У местоименного плюсы будут стоять в первом и третьем столбцах, - во второй и в третьей. Служебные слова могут только выражать понятие, то есть имеют один плюс во второй графе. Напротив междометий во всех трех столбцах будут стоять минусы.

Видео по теме

Гибридизацией называется процесс получения гибридов – растений или животных, произошедших от скрещения разных сортов и пород. Слово гибрид (hibrida) с латинского языка переводится как «помесь».

Гибридизация: естественная и искусственная

Процесс гибридизации основан на объединении в одной клетке генетического материала разных клеток от разных особей. Различается внутривидовая и отдаленная, при которой происходит соединение разных геномов. В природе естественная гибридизация происходила и происходит без участия человека постоянно. Именно скрещиваясь внутри вида, изменялись и улучшались растения и появлялись новые сорта и породы животных. С точки зрения происходит гибридизация ДНК, нуклеиновых кислот, изменения на атомном и внутриатомном уровнях.

В академической химии под гибридизацией понимается специфическое взаимодействие в молекулах вещества атомных орбиталей. Но это не реальный физический процесс, а лишь гипотетическая модель, концепция.

Гибриды в растениеводстве

В 1694 году немецкий ученый Р. Камерариус предложил искусственно получать . А в 1717 году английский Т. Фэрчайдл впервые скрестил разные виды гвоздик. Сегодня внутривидовая гибридизация растений производится с целью получения высокоурожайных или приспособленных, например, морозостойких сортов. Гибридизация форм и сортов является одним из методов селекции растений. Таким образом создано огромное количество современных сортов сельхозкультур.

При отдаленной гибридизации, когда скрещиваются представители разных видов и происходит объединение разных геномов, полученные гибриды в большинстве случаев не дают потомство или производят помеси низкого качества. Именно поэтому нет смысла оставлять семена созревших на грядке огурцов-гибридов, а всякий раз покупать их семена в специализированном магазине.

Селекция в животноводстве

В мире естественная гибридизация, как внутривидовая, так и отдаленная, также имеет место. Мулы были известны человеку еще за две тысячи лет до нашей эры. И в настоящее время мул и лошак используется в домашнем хозяйстве как относительно дешевое рабочее животное. Правда, такая гибридизация является межвидовой, поэтому самцы-гибриды рождаются обязательно стерильными. Самки же очень редко могут дать потомство.

Мул – это гибрид кобылицы и осла. Гибрид, полученный от скрещивания жеребца и ослицы, называется лошак. Специально разводятся мулы. Они выше и сильнее лошака.

А вот скрещивание домашней собаки с волком было очень распространенным занятием у охотников. Затем, полученное потомство подвергалось дальнейшей селекции, в результате создавались новые породы собак. Сегодня селекция животных – важная составляющая успешности отрасли животноводства. Гибридизация проводится целенаправленно, с ориентацией на заданные параметры.

Sp- гибридизация

sp–гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s и p-неспаренные электроны. При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180 о.

Рис.3 sp-гибридные орбитали

Экспериментальные данные показывают, что все галогениды Be, Zn, Cd и Hg (II) линейны и обе связи имеют одинаковую длину.

sp 2 -гибридизация

В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3:

Рис.4 sp 2 -гибридизация

sp 3 -гибридизация

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород - sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого "смотрят" два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра.

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная BeF 2 , CO 2 , NO 2 +
sp 2 3 Треугольная BF 3 , NO 3 - , CO 3 2-
sp 3 4 Тетраэдрическая CH 4 , ClO 4 - , SO 4 2- , NH 4 +
dsp 2 4 Плоскоквадратная Ni(CO) 4 , XeF 4
sp 3 d 5 Гексаэдрическая PCl 5 , AsF 5
sp 3 d 2 6 Октаэдрическая SF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. - М.; Л.: Госхимиздат, 1947. - 440 с.
  • Полинг Л. Общая химия. Пер. с англ. - М .: Мир, 1974. - 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. - Ростов-на-Дону: Феникс, 1997. - С. 397-406. - ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. - М .: Мир, 1975. - 278 с.

См. также

Примечания


Wikimedia Foundation . 2010 .

Основные понятия органической химии. Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область - органическая химия.

Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым. (НЕ ФАКТ ЧТО ТО ЧТО НУЖНО).

Гибридизация (химия) - специфическое взаимодействие атомных орбиталей в молекулах.

Атомы (наименьшая возможная частица любого из простейших химических веществ, называемых элементами) состоят из ядер и электронов, которые вокруг них крутятся. Электроны - это не совсем корпускулы, но и волны тоже, поэтому они образуют своеобразные облака вокруг ядер атомов (некие пространства, в которых "обитают" электроны). Если облако одного электрона парекрывается с облаком другого, то может произойти гибридизация - электронные облака объединяются и два электрона начинают "обитать" в одном общем облаке. Поскольку эти электроны принадлежат разным атомам, атомы становятся связаными.

Гибридизация орбиталей - концепция смешения разных, но близких по энергии орбиталей данногоатома, с возникновением того же числа новых гибридных орбиталей, одинаковых по энергии и форме. Гибридизация атомных орбиталей происходит при возникновении ковалентной связи между атомами. Гибридизация орбиталей очень полезна при объяснении формы молекулярных орбиталей и является интегральной частью теории валентных связей.

Химические превращения высокомолекулярных соединений. Реакции деструкции полимеров. Виды деструкции.

Различают три вида реакций полимеров:
– реакции без изменения степени полимеризации (полимераналогичные превращения);
– реакции, приводящие к ее увеличению (структурирование, блок- и привитая сополимеризация);
– реакции, приводящие к уменьшению степени полимеризации (разрыв цепи при деструкции полимера).

Виды:

Химическая деструкция;

Окислительн6ая деструкция;

Окислительная деструкция наблюдается как у гетероцепных, так и у карбоцепных полимеров;

Деструкция под влиянием физических воздействий

Термическая деструкция

Фотохимическая деструкция

Деструкция под влиянием радиоактивного излучения. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические и структурные изменения, приводящие к изменению физико-химических и физико-механических свойств


Механохимическая деструкция

Билет № 5

1.Типы гибридизации атомных орбиталей в органических соединениях. sp 3 −, sp 2 −, sp− гибридизация.

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома.

Виды гибридизации

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в однойплоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.