Решение простых линейных уравнений

Линейные уравнения – довольно безобидная и понятная тема школьной математики. Но, как это ни странно, количество ошибок на ровном месте при решении линейных уравнений лишь немногим меньше, чем в других темах – квадратных уравнениях, логарифмах, тригонометрии и прочих. Причины большинства ошибок – банальные тождественные преобразования уравнений. В первую очередь, это путаница в знаках при переносе слагаемых из одной части уравнения в другую, а также ошибки при работе с дробями и дробными коэффициентами. Да-да! Дроби в линейных уравнениях тоже встречаются! Сплошь и рядом. Чуть ниже такие злые уравнения мы с вами тоже обязательно разберём.)

Ну что, не будем тянуть кота за хвост и начнём разбираться, пожалуй? Тогда читаем и вникаем.)

Что такое линейное уравнение? Примеры.

Обычно линейное уравнение имеет следующий вид:

ax + b = 0,

Где a и b – любые числа. Какие угодно: целые, дробные, отрицательные, иррациональные – всякие могут быть!

Например:

7х + 1 = 0 (здесь a = 7, b = 1)

x – 3 = 0 (здесь a = 1, b = -3)

x/2 – 1,1 = 0 (здесь a = 1/2, b = -1,1)

В общем, вы поняли, я надеюсь.) Всё просто, как в сказке. До поры до времени… А если присмотреться к общей записи ax+b=0 более пристально, да немного призадуматься? Ведь a и b – любые числа ! А если у нас, скажем, a = 0 и b = 0 (любые же числа можно брать!), то что у нас тогда получится?

0 = 0

Но и это ещё не все приколы! А если, допустим, a = 0, b = -10? Тогда уже совсем какая-то ахинея получается:

0 = 10.

Что весьма и весьма напрягает и подрывает завоёвываемое потом и кровью доверие к математике… Особенно на контрольных и экзаменах. А ведь из этих непонятных и странных равенств ещё и икс найти нужно! Которого нету вообще! И вот тут даже хорошо подготовленные ученики, порой, могут впасть, что называется, в ступор… Но не переживайте! В данном уроке все такие сюрпризы мы тоже рассмотрим. И икс из таких равенств тоже обязательно отыщем.) Причём этот самый икс ищется очень и очень просто. Да-да! Удивительно, но факт.)

Ну хорошо, это понятно. Но как же можно узнать по внешнему виду задания, что перед нами именно линейное уравнение, а не какое-либо ещё? К сожалению, только по внешнему виду распознать тип уравнения возможно далеко не всегда. Дело всё в том, что линейными называются не только уравнения вида ax+b=0, но и любые другие уравнения, которые тождественными преобразованиями, так или иначе, сводятся к такому виду. А как тут узнаешь, сводится оно или нет? Пока пример почти не решишь – почти никак. Это огорчает. Но для некоторых типов уравнений можно при одном беглом взгляде сразу с уверенностью сказать, линейное оно или нет.

Для этого ещё разок обратимся к общей структуре любого линейного уравнения:

ax + b = 0

Обратите внимание: в линейном уравнении всегда присутствует только переменная икс в первой степени и какие-то числа! И всё! Больше ничего. При этом нету иксов в квадрате, в кубе, под корнем, под логарифмом и прочей экзотики. И (что особенно важно!) нет дробей с иксом в знаменателях! А вот дроби с числами в знаменателях или деление на число – запросто!

Например:

Это линейное уравнение. В уравнении присутствуют только иксы в первой степени да числа. И нету иксов в более высоких степенях – в квадрате, в кубе и так далее. Да, здесь есть дроби, но при этом в знаменателях дробей сидят только числа. А именно - двойка и тройка. Иными словами, в уравнении нету деления на икс .

А вот уравнение

Уже нельзя назвать линейным, хотя здесь тоже присутствуют только числа и иксы в первой степени. Ибо, помимо всего прочего, здесь есть ещё и дроби с иксами в знаменателях . И после упрощений и преобразований такое уравнение может стать каким угодно: и линейным, и квадратным – всяким.

Как решать линейные уравнения? Примеры.

Так как же решать линейные уравнения? Читайте дальше и удивляйтесь.) Всё решение линейных уравнений базируется всего на двух основных вещах. Перечислим их.

1) Набор элементарных действий и правил математики.

Это использование скобок, раскрытие скобок, работа с дробями, работа с отрицательными числами, таблица умножения и так далее. Эти знания и умения необходимы не только для решения линейных уравнений, а для всей математики вообще. И, если с этим проблемы, вспоминайте младшие классы. Иначе несладко вам придётся…

2)

Их всего два. Да-да! Более того, эти самые базовые тождественные преобразования лежат в основе решения не только линейных, а вообще любых уравнений математики! Одним словом, решение любого другого уравнения – квадратного, логарифмического, тригонометрического, иррационального и т.д. – как правило, начинается с этих самых базовых преобразований. А вот решение именно линейных уравнений, собственно, на них же (преобразованиях) и заканчивается. Готовым ответом.) Так что не поленитесь и прогуляетесь по ссылке.) Тем более, что там линейные уравнения тоже детально разбираются.

Что ж, я думаю, пора приступать к разбору примеров.

Для начала, в качестве разминки, рассмотрим какую-нибудь элементарщину. Безо всяких дробей и прочих наворотов. Например, такое уравнение:

х – 2 = 4 – 5х

Это классическое линейное уравнение. Все иксы максимум в первой степени и деления на икс нигде нету. Схема решения в таких уравнениях всегда едина и проста до ужаса: все члены с иксами надо собрать слева, а все члены без иксов (т.е. числа) собрать справа. Вот и приступаем к сбору.

Для этого запускаем в ход первое тождественное преобразование. Нам нужно перенести -5х влево, а -2 перенести вправо. Со сменой знака, ясное дело.) Вот и переносим:

х + 5х = 4 + 2

Ну вот. Полдела сделано: иксы собрали в кучку, числа – тоже. Теперь слева приводим подобные, а справа – считаем. Получаем:

6х = 6

Чего теперь нам не хватает для полного счастья? Да чтобы слева чистый икс остался! А шестёрка – мешает. Как от неё избавиться? Запускаем теперь второе тождественное преобразование – делим обе части уравнения на 6. И – вуаля! Ответ готов.)

х = 1

Разумеется, пример совсем примитивный. Чтобы общую идею уловить. Что ж, решим что-нибудь посущественнее. Например, разберём вот такое уравнение:

Детально разберём.) Это тоже линейное уравнение, хотя, казалось бы, тут есть дроби. Но в дробях есть деление на двойку и есть деление на тройку, а вот деления на выражение с иксом – нету! Так что – решаем. Используя всё те же тождественные преобразования, да.)

Что вначале делать будем? С иксами - влево, без иксов – вправо? В принципе, можно и так. Лететь в Сочи через Владивосток.) А можно пойти по кратчайшему пути, сразу воспользовавшись универсальным и мощным способом. Если знать тождественные преобразования, разумеется.)

Для начала задаю ключевой вопрос: что вам сильнее всего бросается в глаза и больше всего не нравится в этом уравнении? 99 человек из 100 скажут: дроби! И будут правы.) Вот и избавимся сначала от них. Безопасно для самого уравнения.) Поэтому начнём сразу со второго тождественного преобразования – с домножения. На что надо помножить левую часть, чтобы знаменатель благополучно сократился? Правильно, на двойку. А правую часть? На тройку! Но… Математика – дама капризная. Она, понимаешь, требует умножать обе части только на одно и то же число! Каждую часть помножать на своё число – не катит… Что делать будем? Что-что… Искать компромисс. Чтобы и наши хотелки удовлетворить (избавиться от дробей) и математику не обидеть.) А помножим-ка обе части на шестёрку!) То есть, на общий знаменатель всех дробей, входящих в уравнение. Тогда одним махом и двойка сократится, и тройка!)

Вот и домножаем. Всю левую часть и всю правую часть целиком! Посему используем скобочки. Вот так выглядит сама процедура:

Теперь раскрываем эти самые скобочки:

Теперь, представив 6 как 6/1, помножим шестёрку на каждую из дробей слева и справа. Это обычное умножение дробей, но, так уж и быть, распишу детально:

А вот здесь – внимание! Числитель (х-3) я взял в скобки! Это всё потому, что при умножении дробей числитель умножается весь, целиком и полностью! И с выражением х-3 надо работать как с одной цельной конструкцией. А вот если вы запишете числитель вот так:

6х – 3 ,

Но у нас всё правильно и надо дорешивать. Что дальше делать? Раскрывать скобки в числителе слева? Ни в коем случае! Мы с вами домножали обе части на 6, чтобы от дробей избавиться, а не для того чтобы париться с раскрытием скобок. На данном этапе нам надо сократить наши дроби. С чувством глубокого удовлетворения сокращаем все знаменатели и получаем уравнение безо всяких дробей, в линеечку:

3(х-3) + 6х = 30 – 4х

А вот теперь и оставшиеся скобки можно раскрыть:

3х – 9 + 6х = 30 – 4х

Уравнение становится всё лучше и лучше! Вот теперь вновь вспоминаем про первое тождественное преобразование. С каменным лицом повторяем заклинание из младших классов: с иксами – влево, без иксов – вправо . И применяем это преобразование:

3х + 6х + 4х = 30 + 9

Приводим подобные слева и считаем справа:

13х = 39

Осталось поделить обе части на 13. То есть, вновь применить второе преобразование. Делим и получаем ответ:

х = 3

Готово дело. Как вы видите, в данном уравнении нам пришлось один раз применить первое преобразование (перенос слагаемых) и дважды – второе: в начале решения мы использовали домножение (на 6) с целью избавиться от дробей, а в конце решения использовали деление (на 13), чтобы избавиться от коэффициента перед иксом. И решение любого (да-да, любого!) линейного уравнения состоит из комбинации этих самых преобразований в той или иной последовательности. С чего именно начинать – от конкретного уравнения зависит. Где-то выгоднее начинать с переноса, а где-то (как в этом примере) – с домножения (или деления).

Работаем от простого – к сложному. Рассмотрим теперь откровенную жесть. С кучей дробей и скобок. А я уж подскажу, как не надорваться.)

Например, вот такое уравнение:

Минуту смотрим на уравнение, ужасаемся, но всё-таки берём себя в руки! Основная проблема – с чего начинать? Можно сложить дроби в правой части. Можно выполнить вычитание дробей в скобках. Можно обе части на что-нибудь домножить. Или поделить… Так что же всё-таки можно? Ответ: всё можно! Ни одно из перечисленных действий математика не запрещает. И какую бы последовательность действий и преобразований вы бы ни выбрали, ответ получится всегда один – правильный. Если, конечно, на каком-то шаге не нарушить тождественность ваших преобразований и, тем самым, не наляпать ошибок…

А, чтобы не наляпать ошибок, в таких навороченных примерах, как этот, всегда полезнее всего оценить его внешний вид и в уме прикинуть: что можно такое сделать в примере, чтобы максимально упростить его за один шаг?

Вот и прикидываем. Слева стоят шестёрки в знаменателях. Лично мне они не нравятся, а убрать их очень легко. Домножу-ка я обе части уравнения на 6! Тогда шестёрки слева благополучно сократятся, дроби в скобках пока никуда не денутся. Ну и ничего страшного. С ними чуток позже расправимся.) А вот справа у нас сократятся знаменатели 2 и 3. Именно при этом действии (умножении на 6) у нас за один шаг достигаются максимальные упрощения!

После умножения всё наше злое уравнение станет вот таким:

Кто не понял, как именно получилось это уравнение, значит, вы плохо усвоили разбор предыдущего примера. А я старался, между прочим…

Итак, раскрываем:

Теперь самым логичным шагом было бы уединить дроби слева, а 5х отправить в правую часть. Заодно и подобные в правой части приведём. Получим:

Уже гораздо лучше. Теперь левая часть сама собой подготовилась к умножению. На что надо домножить левую часть, чтобы сразу и пятёрка сократилась, и четвёрка? На 20! Но ещё у нас присутствуют минусы в обеих частях уравнения. Поэтому удобнее всего будет умножать обе части уравнения не на 20, а на -20. Тогда одним махом и минусы исчезнут, и дроби.

Вот и умножаем:

Кому до сих пор непонятен этот шаг – значит, проблемы не в уравнениях. Проблемы – в основах! Вновь вспоминаем золотое правило раскрытия скобок:

Если число умножается на какое-то выражение в скобках, то это число надо последовательно умножить на каждое слагаемое этого самого выражения. При этом если число положительно, то знаки выражений после раскрытия сохраняются. Если отрицательно – меняются на противоположные:

a(b+c) = ab+ac

-a(b+c) = -ab-ac

Минусы у нас исчезли после домножения обеих частей на -20. И теперь скобки с дробями слева мы умножаем на вполне себе положительное число 20. Стало быть, при раскрытии этих скобок все знаки, что были внутри них, сохраняются. А вот откуда взялись скобки в числителях дробей, я уже подробно объяснял в предыдущем примере.

А вот теперь дроби и сократить можно:

4(3-5х)-5(3х-2) = 20

Раскрываем оставшиеся скобки. Опять же, правильно раскрываем. Первые скобки умножаются на положительное число 4 и, стало быть, все знаки при их раскрытии сохраняются. А вот вторые скобки умножаются на отрицательное число -5 и, поэтому, все знаки меняются на противоположные:

12 - 20х - 15х + 10 = 20

Остались сущие пустяки. С иксами влево, без иксов – вправо:

-20х – 15х = 20 – 10 – 12

-35х = -2

Вот почти и всё. Слева нужен чистый икс, а число -35 мешает. Вот и делим обе части на (-35). Напоминаю, что второе тождественное преобразование разрешает нам умножать и делить обе части на какое угодно число. В том числе и на отрицательное.) Лишь бы не на ноль! Смело делим и получаем ответ:

X = 2/35

На сей раз икс получился дробным. Ничего страшного. Такой уж пример.)

Как мы видим, принцип решения линейных уравнений (даже самых накрученных) довольно простой: берём исходное уравнение и тождественными преобразованиями последовательно упрощаем его прямо до получения ответа. С соблюдением основ, разумеется! Главные проблемы здесь именно в несоблюдении основ (скажем, перед скобками стоит минус, а знаки при раскрытии поменять забыли), а также в банальной арифметике. Так что не пренебрегайте основами! Они – фундамент всей остальной математики!

Некоторые приколы при решении линейных уравнений. Или особые случаи.

Всё бы ничего. Однако… Попадаются среди линейных уравнений и такие забавные перлы, которые в процессе их решения могут и в сильный ступор вогнать. Даже отличника.)

Например, вот такое безобидное с виду уравнение:

7х + 3 = 4х + 5 + 3х - 2

Широко позёвывая и слегка скучая, собираем все иксы слева, а все числа справа:

7х-4х-3х = 5-2-3

Приводим подобные, считаем и получаем:

0 = 0

Вот-те раз! Выдал примерчик фокус! Само по себе это равенство возражений не вызывает: ноль действительно равен нулю. Но икс-то пропал! Бесследно! А мы обязаны записать в ответе, чему равен икс . Иначе решение не считается, да.) Что же делать?

Без паники! В таких нестандартных случаях спасают самые общие понятия и принципы математики. Что такое уравнение? Как решать уравнения? Что значит решить уравнение?

Решить уравнение – это значит, найти все значения переменной икс, которые при подстановке в исходное уравнение дадут нам верное равенство (тождество)!

Но верное равенство у нас уже получилось ! 0=0, вернее некуда!) Остаётся догадаться, при каких именно иксах у нас получается это равенство. Какие же такие иксы можно подставлять в исходное уравнение, если при подстановке все они всё равно посокращаются в полный ноль? Неужели ещё не догадались?

Ну, конечно же! Иксы можно подставлять любые !!! Совершенно любые. Какие хотите, такие и подставляйте. Хоть 1, хоть -23, хоть 2,7 – какие угодно! Они всё равно сократятся и в результате останется чистая правда. Попробуйте, поподставляйте и убедитесь лично.)

Вот вам и ответ:

х – любое число .

В научной записи это равенство пишется так:

Читается эта запись так: «Икс – любое действительное число.»

Или в другой форме, через промежутки:

Как вам больше нравится, так и оформляйте. Это верный и совершенно полноценный ответ!

А теперь я изменю в нашем исходном уравнении всего одно число. Вот такое уравнение теперь решим:

7х + 2 = 4х + 5 + 3х – 2

Опять переносим слагаемые, считаем и получаем:

7х – 4х – 3х = 5 – 2 – 2

0 = 1

И как вам этот прикол? Было обычное линейное уравнение, а стало непонятное равенство

0 = 1…

Говоря научным языком, мы получили неверное равенство. А по-русски неправда это. Бред сивой кобылы. Ахинея.) Ибо ноль никак не равен единице!

А теперь опять соображаем, какие же иксы при подстановке в исходное уравнение дадут нам верное равенство? Какие? А никакие! Какой икс ни подставляй, всё равно всё посокращается и останется лажа.)

Вот и ответ: решений нет .

В математической записи такой ответ оформляется вот так:

Читается: «Икс принадлежит пустому множеству.»

Такие ответы в математике тоже встречаются довольно часто: далеко не всегда у какого-либо уравнения имеются корни в принципе. Какие-то уравнения могут и вовсе не иметь корней. Совсем.

Вот такие вот два сюрприза. Надеюсь, что теперь внезапная пропажа иксов в уравнении не поставит вас навечно в тупик. Дело вполне знакомое.)

И тут слышу закономерный вопрос: а в ОГЭ или ЕГЭ они будут? На ЕГЭ сами по себе в качестве задания – нет. Слишком уж простенькие. А вот в ОГЭ или в текстовых задачках – запросто! Так что теперь – тренируемся и решаем:

Ответы (в беспорядке): -2; -1; любое число; 2; нет решений; 7/13.

Всё получилось? Отлично! У вас неплохие шансы на экзамене.

Что-то не сходится? Гм… Печалька, конечно. Значит, где-то пока есть пробелы. Либо в основах, либо в тождественных преобразованиях. Либо же дело в банальной невнимательности. Перечитайте урок ещё раз. Ибо не та это тема, без которой можно вот так легко обойтись в математике…

Удачи! Она вам обязательно улыбнётся, поверьте!)

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени : без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

– Решение системы линейных уравнений методом подстановки («школьный метод») ;
– Решение системы методом почленного сложения (вычитания) уравнений системы ;
– Решение системы по формулам Крамера ;
– Решение системы с помощью обратной матрицы ;
– Решение системы методом Гаусса .

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Решение системы линейных уравнений методом подстановки

Данный метод также можно назвать «школьным методом» или методом исключения неизвестных. Образно говоря, его еще можно назвать «недоделанным методом Гаусса».

Пример 1


Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений) .Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.

Существует графический метод решения системы, с которым можно ознакомиться на уроке Простейшие задачи с прямой . Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.

Решаем : из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:

Раскрываем скобки, приводим подобные слагаемые и находим значение :

Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:

Ответ :

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку (устно, на черновике либо калькуляторе) . Благо, делается это легко и быстро.

1) Подставляем найденный ответ в первое уравнение :

– получено верное равенство.

2) Подставляем найденный ответ во второе уравнение :

– получено верное равенство.

Или, если говорить проще, «всё сошлось»

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не .
Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов – выразить из второго уравнения:

Получаются дроби, а оно зачем? Есть более рациональное решение.

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаю Ваше вниманиена то, КАК я записал выражение. Не так: , и ни в коем случае не так: .

Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных неправильных дробях .

Именно , а не или !

Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.

Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:

Любое задание следует стремиться выполнить самым рациональным способом . Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.

Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не подумает, что ты лох снизит оценку за использование «школьного метода».
Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.

Пример 2

Решить систему линейных уравнений с тремя неизвестными

Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции . Рассматриваемая система взята мной как раз оттуда.

При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.

Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:

Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач.

Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:

Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или .

Далее, выражение для подставляем во второе и третье уравнения системы:

Раскрываем скобки и приводим подобные слагаемые:

Третье уравнение делим на 2:

Из второго уравнения выразим и подставим в третьей уравнение:

Практически всё готово, из третьего уравнения находим:
Из второго уравнения:
Из первого уравнения:

Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:

1)
2)
3)

Получены соответствующие правые части уравнений, таким образом, решение найдено верно.

Пример 3

Решить систему линейных уравнений с 4 неизвестными

Это пример для самостоятельного решения (ответ в конце урока).

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Пример 4

Решить систему линейных уравнений:

Я взял ту же систему, что и первом примере.
Анализируя систему уравнений, замечаем, что коэффициенты при переменной одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.
Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных .

Начальный уровень

Линейные уравнения. Полное руководство (2019)

Что такое «линейные уравнения»

или в устной форме - трем друзьям дали по яблок из расчета, что всего в наличии у Васи яблок.

И вот ты уже решил линейное уравнение
Теперь дадим этому термину математическое определение.

Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна . Оно выглядит следующим образом:

Где и - любые числа и

Для нашего случая с Васей и яблоками мы запишем:

- «если Вася раздаст всем троим друзьям одинаковое количество яблок, у него яблок не останется»

«Скрытые» линейные уравнения, или важность тождественных преобразований

Несмотря на то, что на первый взгляд все предельно просто, при решении уравнений необходимо быть внимательным, потому что линейными уравнениями называются не только уравнения вида, но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. Например:

Мы видим, что справа стоит, что, по идее, уже говорит о том, что уравнение не линейное. Мало того, если мы раскроем скобки, то получим еще два слагаемых, в которых будет, но не надо торопиться с выводами ! Прежде, чем судить, является ли уравнение линейным, необходимо произвести все преобразования и таким образом, упростить исходный пример. При этом преобразования могут изменять внешний вид, но никак не саму суть уравнения.

Иными словами данные преобразования должны быть тождественными или равносильными . Таких преобразований всего два, но они играют очень, ОЧЕНЬ важную роль при решении задач. Рассмотрим оба преобразования на конкретных примерах.

Перенос влево - вправо.

Допустим, нам необходимо решить такое уравнение:

Еще в начальной школе нам говорили: «с иксами - влево, без иксов - вправо». Какое выражение с иксом стоит справа? Правильно, а не как не. И это важно, так как при неправильном понимании этого, казалось бы простого вопроса, выходит неверный ответ. А какое выражение с иксом стоит слева? Правильно, .

Теперь, когда мы с этим разобрались, переносим все слагаемые с неизвестными в левую сторону, а все, что известно - в правую, помня, что если перед числом нет никакого знака, например, то значит число положительно, то есть перед ним стоит знак « ».

Перенес? Что у тебя получилось?

Все, что осталось сделать - привести подобные слагаемые. Приводим:

Итак, первое тождественное преобразование мы успешно разобрали, хотя уверена, что ты и без меня его знал и активно использовал. Главное - не забывай про знаки при числах и меняй их на противоположные при переносе через знак равенства!

Умножение-деление.

Начнем сразу же с примера

Смотрим и соображаем: что нам не нравится в этом примере? Неизвестное все в одной части, известные - в другой, но что-то нам мешает… И это что-то - четверка, так как если бы ее не было, все было бы идеально - икс равен числу - именно так, как нам и нужно!

Как можно от неё избавиться? Перенести вправо мы не можем, так как тогда нам нужно переносить весь множитель (мы же не можем ее взять и оторвать от), а переносить весь множитель тоже не имеет смысла…

Пришло время вспомнить про деление, в связи с чем разделим все как раз на! Все - это означает и левую, и правую часть. Так и только так! Что у нас получается?

Вот и ответ.

Посмотрим теперь другой пример:

Догадываешься, что нужно сделать в этом случае? Правильно, умножить левую и правую части на! Какой ты получил ответ? Правильно. .

Наверняка все про тождественные преобразования ты и так уже знал. Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего - Например, для решения нашего большого примера:

Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования. Так что начнем!

Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности. Если ты не помнишь, что это такое и как раскрываются скобки, настоятельно рекомендую почитать тему , так как эти навыки пригодятся тебе при решении практически всех примеров, встречающихся на экзамене.
Раскрыл? Сравниваем:

Теперь пришло время привести подобные слагаемые. Помнишь, как нам в тех же начальных классах говорили «не складываем мухи с котлетами»? Вот напоминаю об этом. Складываем все отдельно - множители, у которых есть, множители, у которых есть и остальные множители, в которых нет неизвестных. Как приведешь подобные слагаемые, перенеси все неизвестные влево, а все, что известно вправо. Что у тебя получилось?

Как ты видишь, иксы в квадрате исчезли, и мы видим совершенно обычное линейное уравнение . Осталось только найти!

И напоследок скажу еще одну очень важную вещь про тождественные преобразования - тождественные преобразования применимы не только для линейных уравнений, но и для квадратных, дробных рациональных и других. Просто нужно запомнить, что при переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число, мы умножаем/делим обе части уравнения на ОДНО и то же число.

Что еще ты вынес из этого примера? Что глядя на уравнение не всегда можно прямо и точно определить, является ли оно линейным или нет. Необходимо сначала полностью упростить выражение, и лишь потом судить, каким оно является.

Линейные уравнения. Примеры.

Вот тебе еще пару примеров для самостоятельной тренировки - определи, является ли уравнение линейным и если да, найди его корни:

Ответы:

1. Является.

2. Не является.

Раскроем скобки и приведем подобные слагаемые:

Произведем тождественное преобразование - разделим левую и правую часть на:

Мы видим, что уравнение не является линейным, так что искать его корни не нужно.

3. Является.

Произведем тождественное преобразование - умножим левую и правую часть на, чтобы избавиться от знаменателя.

Подумай, почему так важно, чтобы? Если ты знаешь ответ на этот вопрос, переходим к дальнейшему решению уравнения, если нет - обязательно загляни в тему , чтобы не наделать ошибок в более сложных примерах. Кстати, как ты видишь, ситуация, когда невозможна. Почему?
Итак, продолжаем и преобразовываем уравнение:

Если ты без труда со всем справился, поговорим о линейных уравнениях с двумя переменными.

Линейные уравнения с двумя переменными

Теперь перейдем к чуть более сложному - линейным уравнениям с двумя переменными.

Линейные уравнения с двумя переменными имеют вид:

Где, и - любые числа и.

Как ты видишь, вся разница только в том, что в уравнение добавляется еще одна переменная. А так все то же самое - здесь нет иксов в квадрате, нет деления на переменную и т.д. и т.п.

Какой бы привести тебе жизненный пример... Возьмем того же Васю. Допустим, он решил, что каждому из 3-ех друзей он даст одинаковое количество яблок, а яблока оставит себе. Сколько яблок нужно купить Васе, если каждому другу он даст по яблоку? А по? А если по?

Зависимость количества яблок, которое получит каждый человек к общему количеству яблок, которое необходимо приобрести будет выражена уравнением:

  • - количество яблок, которое получит человек (, или, или);
  • - количество яблок, которое Вася возьмет себе;
  • - сколько всего яблок нужно купить Васе с учетом количества яблок на человека.

Решая эту задачу, мы получим, что если одному другу Вася даст яблоко, то ему необходимо покупать штук, если даст яблока - и т.д.

И вообще. У нас две переменные. Почему бы не построить эту зависимость на графике? Строим и отмечаем значение наших, то есть точки, с координатами, и!

Как ты видишь, и зависят друг от друга линейно , отсюда и название уравнений - «линейные ».

Абстрагируемся от яблок и рассмотрим графически различные уравнения. Посмотри внимательно на два построенных графика - прямой и параболы, заданными произвольными функциями:

Найди и отметь на обоих рисунках точки, соответствующие.
Что у тебя получилось?

Ты видишь, что на графике первой функции одному соответствует один , то есть и линейно зависят друг от друга, что не скажешь про вторую функцию. Конечно, ты можешь возразить, что на втором графике так же соответствует икс - , но это только одна точка, то есть частный случай, так как ты все равно можешь найти такой, которому соответствует не только один. Да и построенный график никак не напоминает линию, а является параболой.

Повторюсь, еще раз: графиком линейного уравнения должна быть ПРЯМАЯ линия .

С тем, что уравнение не будет линейным, если у нас идет в какой-либо степени - это понятно на примере параболы, хотя для себя ты можешь построить еще несколько простых графиков, например или. Но я тебя уверяю - ни один из них не будет представлять собой ПРЯМУЮ ЛИНИЮ.

Не веришь? Построй, а затем сравни с тем, что получилось у меня:

А что будет, если мы разделим что-то на, например, какое-то число? Будет ли линейная зависимость и? Не будем рассуждать, а будем строить! Например, построим график функции.

Как-то не выглядит построенное прямой линией… соответственно, уравнение не линейное.
Подведем итоги:

  1. Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.
  2. Линейное уравнение с одной переменной имеет вид:
    , где и - любые числа;
    Линейное уравнение с двумя переменными:
    , где, и - любые числа.
  3. Не всегда сразу можно определить, является ли уравнение линейным или нет. Иногда, чтобы понять это, необходимо произвести тождественные преобразования перенести влево/вправо подобные члены, не забыв изменить знак, или умножить/разделить обе части уравнения на одного и тоже число.

ЛИНЕЙНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

1. Линейное уравнение

Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.

2. Линейное уравнение с одной переменной имеет вид:

Где и - любые числа;

3. Линейное уравнение с двумя переменными имеет вид:

Где, и - любые числа.

4. Тождественные преобразования

Чтобы определить является ли уравнение линейным или нет, необходимо произвести тождественные преобразования:

  • перенести влево/вправо подобные члены, не забыв изменить знак;
  • умножить/разделить обе части уравнения на одного и тоже число.

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!