Элементы крови и их функции. Состав крови и функции крови человека. Неорганические вещества в составе плазмы крови, их особенности и влияние

Говорить о крови немыслимо без учета её основных составляющих, которые обусловливают уникальные свойства этой жидкой ткани организма.

Компоненты крови

Как правило, кровь составляет 7-8% массы тела человека; у взрослых это 4,5-6 литров. Кровь – это жидкость, которая выполняет : транспортировку кислорода и питательных веществ к нашим клеткам, избавляет от углекислого газа, аммиака и других отходов (смотрите ). Кроме того, она играет важную роль в нашей иммунной системе, поддерживает относительно постоянную температуру тела. Кровь является высокоспециализированной тканью, она состоит из более чем 4000 различных видов компонентов . Наиболее важные из них четыре основные компонента крови: , , и . Все эти компоненты содержатся в крови людей не зависимо от их расовых, этнических и религиозных отличий.

Эритроциты

Красные клетки крови или эритроциты , являются относительно большими клетками без ядер. Эритроциты обычно составляют 40-50% от общего объема крови. Они переносят кислород из легких к каждой клетке тканей тела и уносят углекислый газ. Эритроциты образуются непрерывно в костном мозге из стволовых клеток в количестве около 2-3 миллионов клеток в секунду . 95% эритроцита занято гемоглобином - газотранспортной молекулой белка. Каждый эритроцит содержит около 270 миллионов богатых железом молекул гемоглобина. Люди, которые страдают анемией, обычно имеют недостаток эритроцитов, а потому чувствуют усталость из-за нехватки кислорода. Красный цвет крови в первую очередь определяется кислородом в эритроцитах. Молекула гемоглобина плода человека (фетальный гемоглобин) отличаются от молекулы гемоглобина взрослых количеством аминокислотных цепей. Фетальный гемоглобин имеет три цепи, в то время как у взрослых только две. Как следствие, молекула фетального гемоглобина связывает и транспортирует относительно больше кислорода к клеткам организма.

Белые клетки, лейкоциты

Тромбоциты

Тромбоциты, или пластинки , являются безъядерными фрагментами клеток, которые работают в системе свертывания крови, на месте повреждения сосудов. Они прилипают к месту повреждения и «латают» место разрыва сосуда. Тромбоциты секретируют практически все белки, необходимые для образования сгустка крови. Тринадцать различных факторов свертывания крови, в дополнение к тромбоцитам, необходимы для того, что кровь свернулась, образовался тромб. Запускается система свертывания по принципу каскада - один фактор запускает другой и т.д.

Тромбоциты не одинаково эффективны в свертываемости крови в течение всего дня. Циркадный ритм системы организма (внутренние биологические часы) вызывает пик активации тромбоцитов утром. Это одна из главных причин, что инфаркты и инсульты более распространены в первой половине дня.

Недавние исследования показали, что тромбоциты также помогают бороться с инфекциями, выпуская белки, которые убивают вторгшиеся бактерии и некоторые другие микроорганизмы. Кроме того, тромбоциты стимулируют иммунную систему. Размер отдельных тромбоцитов составляет приблизительно 1/3 размера эритроцита. Срок службы тромбоцитов 9-10 дней. Как эритроциты и лейкоциты крови, тромбоциты образуются в костном мозге из общего предшественника – стволовой клетки.

Плазма

Желтоватого цвета биологическая жидкость, в которой растворены сахара, жиры, белки и соли и взвешены эритроциты, лейкоциты и тромбоциты. Как правило, 55% объема нашей крови приходится на плазму. Так как сердце качает кровь к клеткам по всему телу, плазма несет питание клеткам и удаляет отходы метаболизма. Плазма содержит факторы свертывания крови, сахара, липиды, витамины, минералы, гормоны, ферменты, антитела и другие белки. Вполне вероятно, что плазма содержит некоторое количество каждого из белков, которые синтезируются организмом - до сих пор в плазме крови человека выявлены около 500 белков .

Функции крови

1. Транспортная

  • Растворенные газы (например, кислород, двуокись углерода)
  • Отходы обмена веществ (например, вода, мочевина)
  • Гормоны
  • Ферменты
  • Питательные вещества (такие как глюкоза, аминокислоты, микроэлементы (витамины и минералы), жирные кислоты, глицерин)
  • Белки плазмы
  • Клетки крови (включая белые клетки крови - лейкоциты, эритроциты - красные клетки крови, и тромбоциты).

2. Поддерживает температуру тела

3. Обеспечивает физиологический диапазон рН:

рН крови должен находиться в диапазоне от 6,8 до 7,4, в противном случае она начинает повреждать клетки.

4. Удаляет токсины из организма

Токсины удаляются из крови через почки и пот

5. Регулирование жидкости и электролитов

Избыток соли удаляется из организма с мочой - до 10 г/сутки

Основные компонента крови и её функции - видео

Кровь – это жидкая соединительная ткань красного цвета, которая все время находится в движении и выполняет много сложных и важных для организма функций. Она постоянно циркулирует в системе кровообращения и переносит необходимые для обменных процессов газы и растворенные в ней вещества.

Строение крови

Что такое кровь? Это ткань, которая состоит из плазмы и находящихся в ней в виде взвеси особых кровяных клеток. Плазма – это прозрачная жидкость желтоватого цвета, составляющая более половины всего объема крови. . В ней находится три основных вида форменных элементов:

  • эритроциты – красные клетки, которые придают крови красный цвет за счет находящегося в них гемоглобина;
  • лейкоциты – белые клетки;
  • тромбоциты – кровяные пластинки.

Артериальная кровь, которая поступает из легких в сердце и затем разносится ко всем органам, обогащена кислородом и имеет ярко-алый цвет. После того как кровь отдаст кислород тканям, она по венам возвращается к сердцу. Лишенная кислорода, она становится более темной.

В кровеносной системе взрослого человека циркулирует примерно от 4 до 5 литров крови. Примерно 55% объема занимает плазма, остальное приходится на форменные элементы, при этом большую часть составляют эритроциты – более 90%.

Кровь – это вязкая субстанция. Вязкость зависит от количества находящихся в ней белков и эритроцитов. Это качество влияет на кровяное давление и скорость движения. Плотностью крови и характером движения форменных элементов обусловлена ее текучесть. Клетки крови двигаются по-разному. Они могут перемещаться группами или поодиночке. Эритроциты могут двигаться как по отдельности, так и целыми «стопками», как сложенные монеты, как правило, создают поток в центре сосуда. Белые клетки перемещаются поодиночке и обычно держатся около стенок.

Плазма – жидкая составляющая светло-желтого цвета, который обусловлен незначительным количеством желчного пигмента и других окрашенных частиц. Примерно на 90 % она состоит из воды и приблизительно на 10% из органических веществ и минералов, растворенных в ней. Ее состав не отличается постоянством и меняется в зависимости от принятой пищи, количества воды и солей. Состав растворенных в плазме веществ следующий:

  • органические – около 0,1% глюкозы, примерно 7% белков и около 2% жиров, аминокислот, молочной и мочевой кислоты и других;
  • минералы составляют 1% (анионы хлора, фосфора, серы, йода и катионы натрия, кальция, железа, магния, калия.

Белки плазмы принимают участие в обмене воды, распределяют ее между тканевой жидкостью и кровью, придают крови вязкость. Некоторые из белков являются антителами и обезвреживают чужеродных агентов. Важная роль отводится растворимому белку фибриногену. Он принимает участие в процессе , превращаясь под действием свертывающих факторов в нерастворимый фибрин.

Кроме этого, в плазме есть гормоны, которые вырабатываются железами внутренней секреции, и другие необходимые для деятельности систем организма биоактивные элементы.

Плазма, лишенная фибриногена, называется сывороткой крови. Более подробно о плазме крови можно почитать здесь.

Эритроциты

Самые многочисленные клетки крови, составляющие порядка 44-48 % от ее объема. Они имеют вид дисков, двояковогнутых в центре, диаметром около 7,5 мкм. Форма клеток обеспечивает эффективность физиологических процессов. За счет вогнутости увеличивается площадь поверхности сторон эритроцита, что важно для обмена газами. Зрелые клетки не содержат ядер. Главная функция эритроцитов – доставка кислорода из легких в ткани организма.

Название их переводится с греческого как «красный». Своим цветом эритроциты обязаны очень сложному по строению белку гемоглобину, который способен связываться с кислородом. В составе гемоглобина – белковая часть, которая называется глобином, и небелковая (гем), содержащая железо. Именно благодаря железу гемоглобин может присоединять молекулы кислорода.

Эритроциты образуются в костном мозге. Срок их полного созревания составляет примерно пять дней. Продолжительность жизни красных клеток – около 120 дней. Разрушение эритроцитов происходит в селезенке и печени. Гемоглобин распадается на глобин и гем. Что происходит с глобином, неизвестно, а из гема высвобождаются ионы железа, возвращаются в костный мозг и идут на производство новых эритроцитов. Гем без железа преобразуется в желчный пигмент билирубин, который с желчью поступает в пищеварительный тракт.

Снижение уровня приводит к такому состоянию, как анемия, или малокровие.

Лейкоциты

Бесцветные клетки периферической крови, защищающие организм от внешних инфекций и патологически измененных собственных клеток. Белые тельца делятся на зернистые (гранулоциты) и незернистые (агранулоциты). К первым относятся нейтрофилы, базофилы, эозинофилы, которые отличают по реакции на разные красители. Ко вторым – моноциты и лимфоциты. Зернистые лейкоциты имеют гранулы в цитоплазме и ядро, состоящее из сегментов. Агранулоциты лишены зернистости, их ядро имеет обычно правильную округлую форму.

Гранулоциты образуются в костном мозге. После созревания, когда образуется зернистость и сегментоядерность, поступают в кровь, где передвигаются вдоль стенок, совершая амебоидные движения. Защищают организм преимущественно от бактерий, способны покидать сосуды и скапливаться в очагах инфекций.

Моноциты – крупные клетки, которые образуются в костном мозге, лимфоузлах, селезенке. Их главная функция – фагоцитоз. Лимфоциты – небольшие клетки, которые делятся на три вида (В-, Т, 0-лимфоциты), каждый из которых выполняет свою функцию. Эти клетки вырабатывают антитела, интерфероны, факторы активации макрофагов, убивают раковые клетки.

Тромбоциты

Небольшие безъядерные бесцветные пластинки, которые представляют собой фрагменты клеток мегакариоцитов, находящихся в костном мозге. Они могут иметь овальную, сферическую, палочкообразную форму. Продолжительность жизни – около десяти дней. Главная функция – участие в процессе свертывания крови. Тромбоциты выделяют вещества, принимающие участие в цепи реакций, которые запускаются при повреждении кровяного сосуда. В результате белок фибриноген превращается в нерастворимые нити фибрина, в которых запутываются элементы крови и образуется тромб.

Функции крови

В том, что кровь необходима организму, вряд ли кто сомневается, а вот зачем она нужна, ответить, возможно, смогут не все. Эта жидкая ткань выполняет несколько функций, среди которых:

  1. Защитная . Главную роль в защите организма от инфекций и повреждений играют лейкоциты, а именно нейтрофилы и моноциты. Они устремляются и скапливаются в месте повреждения. Главная их назначение фагоцитоз, то есть поглощение микроорганизмов. Нейтрофилы относятся к микрофагам, а моноциты – к макрофагам. Другие – лимфоциты – вырабатывают против вредных агентов антитела. Кроме этого, лейкоциты участвуют в удалении из организма поврежденных и мертвых тканей.
  2. Транспортная. Кровоснабжение оказывает влияние практически на все процессы, происходящие в организме, в том числе наиболее важные – дыхание и пищеварение. С помощью крови осуществляется перенос кислорода от легких к тканям и углекислого газа от тканей к легким, органических веществ от кишечника к клеткам, конечных продуктов, которые затем выводятся почками, транспортировка гормонов и других биоактивных веществ.
  3. Регуляция температуры . Кровь нужна человеку для поддержания постоянной температуры тела, норма которой находится в очень узком диапазоне – около 37°C.

Заключение

Кровь – это одна из тканей организма, имеющая определенный состав и выполняющая целый ряд важнейших функций. Для нормальной жизнедеятельности необходимо, чтобы все компоненты находились в крови в оптимальном соотношении. Изменения в составе крови, обнаруженные во время анализа, дают возможность выявить патологию на раннем этапе.

1. Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве-ществ всех клеток тела. Красный цвет крови придает гемоглобин , содер-жащийся в эритроцитах.

У многоклеточных организмов большинство клеток не имеет непо-средственного контакта с внешней средой, их жизнедеятельность обеспе-чивается наличием внутренней среды (кровь, лимфа , тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма . Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств, которое называется гомеостазом . Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гисто-гематические барьеры, состоящие из эндотелия капилляров , базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

В понятие "система крови" входят: кровь, органы кроветворения (красный костный мозг , лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогуморальный аппарат). Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

Физиологические функции крови:

4) терморегуляторная - регуляция температуры тела путем охлаж-дения энергоемких органов и согревания органов, теряющих тепло;

5) гомеостатическая - поддержание стабильности ряда констант гомеостаза: рН, осмотического давления, изоионии и т.д.;

Лейкоциты выполняют множество функций:

1) защитная - борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

2) антитоксическая - выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

3) выработка антител, обеспечивающих иммунитет, т.е. невос-приимчивость к заразным болезням;

4) участвуют в развитии всех этапов воспаления, стимулируют вос-становительные (регенеративные) процессы в организме и ускоряют за-живление ран;

5) ферментативная - они содержат различные ферменты, необхо-димые для осуществления фагоцитоза;

6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гнетамина, активатора плазминогена и т.д.;

7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;

9) образуют активные (эндогенные) пирогены и формируют лихора-дочную реакцию;

10) несут макромолекулы с информацией, необходимой для управле-ния генетическим аппаратом других клеток организма; путем таких меж-клеточных взаимодействий (креаторных связей) восстанавливается и под-держивается целостность организма.

4 . Тромбоцит или кровяная пластинка, - участвующий в свертывании крови форменный эле-мент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диа-метром 2-5 мкм. Тромбоциты образуются в красном костном мозге из ги-гантских клеток - мегакариоцитов. В 1 мкл (мм 3) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбо-цитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2- 10 дней.

Основными физиологическими свойствами тромбоцитов являются:

1) амебовидная подвижность за счет образования ложноножек;

2) фагоцитоз, т.е. поглощение инородных тел и микробов;

3) прилипание к чужеродной поверхности и склеивание между со-бой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;

4) легкая разрушаемость;

5) выделение и поглощение различных биологически активных ве-ществ типа серотонина, адреналина, норадреналина и др.;

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

Функции тромбоцитов:

1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);

2) участвуют в остановке кровотечения (гемостазе) за счет при-сутствующих в них биологически активных соединений;

3) выполняют защитную функцию за счет склеивания (агглютина-ции) микробов и фагоцитоза;

4) вырабатывают некоторые ферменты (амилолитические, протеоли-тические и др.), необходимые для нормальной жизнедеятельности тромбо-цитов и для процесса остановки кровотечения;

5) оказывают влияние на состояние гистогематических барьеров ме-жду кровью и тканевой жидкостью путем изменения проницаемости сте-нок капилляров;

6) осуществляют транспорт креаторных веществ, важных для сохра-нения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

Скорость (реакция) оседания эритроцитов (сокращенно СОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П. Панченкова.

В норме СОЭ равна:

У мужчин - 1-10 мм/час;

У женщин - 2-15 мм/час;

Новорожденные — от 2 до 4 мм/ч;

Дети первого года жизни — от 3 до 10 мм/ч;

Дети возрастом 1-5 лет — от 5 до 11 мм/ч;

Дети 6-14 лет — от 4 до 12 мм/ч;

Старше 14 лет — для девочек — от 2 до 15 мм/ч, а для мальчиков — от 1 до 10 мм/ч.

у беременных женщин перед родами - 40-50 мм/час.

Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолеку-лярных белков - глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, по-этому СОЭ достигает 40-50 мм/час.

Лейкоциты имеют свой, независимый от эритроцитов режим оседа-ния. Однако скорость оседания лейкоцитов в клинике во внимание не при-нимается.

Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения.

Различают 2 механизма остановки кровотечения:

1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

2) коагуляционный гемостаз (свертывание крови).

Первый механизм способен самостоятельно за несколько минут оста-новить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением.

Он слагается из двух процессов:

1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

2) образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

Второй механизм остановки кровотечения - свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа.

Осуществляется в три фа-зы:

I фаза - формирование протромбиназы;

II фаза - образование тромбина;

III фаза - превращение фибриногена в фибрин.

В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, при-нимает участие 15 плазменных факторов: фибриноген, протромбин, ткане-вой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фак-тор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др.

Большинство этих факторов образуется в печени при участии вита-мина К и является проферментами, относящимися к глобулиновой фрак-ции белков плазмы. В активную форму - ферменты они переходят в про-цессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

Кровяной сгусток образуют сеть из волокон нерастворимого фибрина и опутанные ею эритроци-ты, лейкоциты и тромбоциты. Прочность обра-зовавшегося кровяного сгустка обеспечивается фактором XIII - фибрин-стабилиризующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других ве-ществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая.

Противосвертывающая система препятствует процессам внутрисосудистого свер-тывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лей-коцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок ги-рудин действует угнетающе на третью стадию процесса свертывания кро-ви, т.е. препятствует образованию фибрина.

Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превраще-ния в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere - сдерживать, останавливать), тормозящие пре-вращение плазминогена в плазмин.

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

В 1901 г. австриец К. Ландштейнер и в 1903 г. чех Я. Янский обна-ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме бы-ли найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты.

Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглю-тинин α, а также В и β называются одноименными. Склеивание эритроци-тов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (челове-ка, получающего кровь), т.е. А + α, В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглю-тинин.

Согласно классификации Я. Янского и К. Ландштейнера у людей име-ется 4 комбинации агглютиногенов и агглютининов, которые обозначают-ся следующим образом: I(0) - αβ., II(А) - А β, Ш(В) - В α и IV(АВ). Из этих обозначений следует, что у людей 1 группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β . У людей II группы эритроциты имеют агглютиноген А, а плазма - агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютино-ген В, а в плазме - агглютинин α. У людей IV группы в эритроцитах со-держатся оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).

Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. По-этому людей с I группой крови называют универсальными донорами. Лю-дям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно пе-реливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

Однако в настоящее время в клинической практике переливают толь-ко одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те-рапия). Это связано с тем, что:

во-первых, при больших массивных переливаниях разведения агглю-тининов донора не происходит, и они склеивают эритроциты реципиента;

во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тя-желые осложнения. Поэтому людей с I группой крови, содержащих агглю-тинины анти-А и анти-В, сейчас называют опасными универсальными до-норами;

в-третьих, в системе АВО выявлено много вариантов каждого агглю-тиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Раз-личие между ними состоит в том, что А1 является самым сильным, а А2-А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при перелива-нии ее больным с I и III группами. Агглютиноген В тоже существует в не-скольких вариантах, активность которых убывает в порядке их нумерации.

В 1930 г. К. Ландштейнер, выступая на церемонии вручения ему Но-белевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эрит-роцитах человека обнаружено более 500 различных агглютиногенов. Толь-ко из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови.

Если же учитывать и все остальные агг-лютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый че-ловек имеет свою группу крови. Данные системы агглютиногенов отлича-ются от системы АВО тем, что не содержат в плазме естественных агглю-тининов, подобных α- и β-агглютининам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела - агг-лютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агг-лютинации можно определить его группу.

Несмотря на простоту метода в 7-10% случаев группа крови опреде-ляется неверно, и больным вводят несовместимую кровь.

Для избежания такого осложнения перед переливанием крови обязательно проводят:

1) определение группы крови донора и реципиента;

2) резус-принадлежность крови донора и реципиента;

3) пробу на индивидуальную совместимость;

4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

1) заместительное действие - замещение потерянной крови;

2) иммуностимулирующее действие - с целью стимуляции защитных сил;

3) кровоостанавливающее (гемостатическое) действие - с целью ос-тановки кровотечения, особенно внутреннего;

4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

5) питательное действие - введение белков, жиров, углеводов в лег-коусвояемом виде.

кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь на-зывается резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов - О, С, Е, из которых наиболее активен О.

Особенностью резус-фактора является то, что у лю-дей отсутствуют антирезус-агглютинины. Однако если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра-батываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее кро-ви антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концен-трации антирезус-агглютининов может наступить смерть плода и выки-дыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

Резус-конфликт возникает лишь при высокой концентрации антирезус-гглютининов. Чаще всего первый ребенок рождается нормальным, по-скольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

Для профилактики резус-конфликта беременным резус-отрица-тельным женщинам назначают антирезус-гамма-глобулин, который ней-трализует резус-положительные антигены плода.

Состав крови – это совокупность всех включенных в нее составных частей , а также органов и отделов человеческого организма, в которых происходит образование ее структурных элементов.

В последнее время, ученые относят к системе крови также и органы, ответственные за выведение продуктов жизнедеятельности организма из кровотока, а также места, в которых распадаются отжившие свой срок клетки крови.

Кровь составляет около 6-8% от общей массы тела взрослого человека. В среднем ОЦК (объем циркулирующей крови) составляет 5 – 6 литров. Для детей общий процент кровотока в 1,5 – 2,0 раза больше, чем для взрослых.

У новорожденных ОЦК равен 15% от массы тела, а у детей до года – 11%. Это объясняется особенностями их физиологического развития .

Главные составляющие

Свойства крови полностью определяются ее составом .

Кровь – это соединительная ткань организма, находящаяся в жидком агрегатном состоянии и осуществляющая поддержание гомеостаза (постоянства внутренней среды организма) в теле человека.

Она выполняет ряд жизненно важных функций, и состоит из двух основных элементов:

  1. Форменные элементы крови (кровяные клетки, которые образуют твердую фракцию кровяного русла);
  2. Плазма (жидкая часть кровотока, представляет собой воду с растворенными или диспергированными в ней органическими и неорганическими веществами).

Соотношение твердых тел к жидкой фракции в крови человека строго контролируется. Показатель отношения между этими величинами называется гематокрит. Гематокрит – это процент форменных элементов в кровотоке по отношению к его жидкой фазе. В норме он примерно равен 40 – 45%.

Задайте свой вопрос врачу клинической лабораторной диагностики

Анна Поняева. Закончила нижегородскую медицинскую академию (2007-2014) и Ординатуру по клинико-лабораторной диагностике (2014-2016).

Любые отклонения будут говорить о нарушениях, которые могут уходить, как в сторону увеличения числа (сгущению крови), так и в сторону снижения (избыточному разжижению).

Гематокрит

Гематокрит постоянно поддерживается на одном и том же уровне .

Это происходит за счет моментальной адаптации организма к любым изменяющимся условиям.

Например, при избыточном объеме воды в плазме, включается ряд приспособительных механизмов, таких как:

  1. Диффузия воды из кровеносного русла в межклеточное пространство (этот процесс осуществляется за счет разницы осмотического давления, о котором поговорим позже);
  2. Активация работы почек по выведению лишнего количества жидкости;
  3. Если имеет место кровотечение (потеря значительного числа эритроцитов и других клеток крови), то в этом случае костный мозг начнет усиленно продуцировать форменные элементы, чтобы выровнять соотношение – гематокрит;

Таким образом, при помощи резервных механизмов, гематокрит постоянно поддерживается на необходимом уровне.

Процессы, позволяющие восполнить количество воды в плазме (при повышении числа гематокрита):

  1. Отдача воды из межклеточного пространства в кровяное русло (обратная диффузия);
  2. Снижение потоотделения (за счет подачи сигнала из продолговатого мозга);
  3. Снижение выделительной активности почек;
  4. Жажда (человек начинает хотеть пить).

При нормальном включении в работу всех звеньев приспособительного аппарата, проблем с временным колебанием гематокритного числа не возникает.

Если какое – то звено нарушено или сдвиги слишком существенны, срочно требуется медицинское вмешательство. Может быть произведено переливание крови, введение внутривенно капельно плазмозамещающих растворов или простое разбавление густой крови натрия хлоридом (физиологическим раствором). При необходимости вывода из кровяного русла лишней жидкости будут применены сильные диуретики, вызывающие обильное мочеиспускание.

Общая структура элементов

Итак, кровь состоит из твердой и жидкой фракции – плазмы и форменных элементов. Каждое из составляющих включает в себя отдельные виды клеток и веществ, рассмотрим их в отдельности.

Плазма крови представляет собой водный раствор химических соединений разной природы.

Она состоит из воды и так называемого сухого остатка, в котором все они и будут представлены.

Сухой остаток состоит из:

  • Белков (альбуминов, глобулинов, фибриногена и др.);
  • Органических соединений (мочевина, билирубин и др.);
  • Неорганических соединений (электролитов);
  • Витаминов;
  • Гормонов;
  • Биологически активных веществ и др.

Все питательные вещества, которые переносит кровь по организму, находятся именно там, в растворенном виде. Сюда же можно отнести и продукты распада пищи, трансформирующиеся в простые молекулы питательных веществ.

Они поставляются к клеткам всего организма как энергетический субстрат.

Форменные элементы крови входят в состав твердой фазы. К ним относятся:

  1. Эритроциты (красные кровяные тельца);
  2. Тромбоциты (бесцветные кровяные тельца);
  3. Лейкоциты (белые клетки крови), они классифицируются на:

Каковы функции крови в организме животного?

Какого цвета бывает кровь у животных и почему?

Транспортная (питательная), выделительная, терморегуляторная, гуморальная, защитная

Цвет крови животных зависит от металлов, которые входят в состав кровяных телец (эритроцитов), или веществ, растворённых в плазме. У всех позвоночных животных, а также у дождевого червя, пиявок, комнатной мухи и некоторых моллюсков в сложном соединении с гемоглобином крови находится окисное железо. Поэтому их кровь красная. В крови многих морских червей, вместо гемоглобина, содержится сходное вещество - хлорокруорин. В его составе найдено закисное железо, и поэтому цвет крови этих червей зелёный. А у скорпионов, пауков, речного рака, осьминогов и каракатиц кровь голубая. Вместо гемоглобина она содержит гемоцианин, с медью в качестве металла. Медь и придает их крови синеватый цвет.

Стр. 82-83

1. Из каких компонентов состоит внутренняя среда? Как они связаны между собой?

Внутреннюю среду организма составляют кровь, тканевая жидкость и лимфа. Кровь движется по системе замкнутых сосудов и непосредственно не контактирует с клетками ткани. Тканевая жидкость образуется из жидкой части крови. Она получила такое название потому, что находится среди тканей тела. Питательные вещества из крови попадают в тканевую жидкость и в клетки. Продукты распада перемещаются в обратном направлении. Лимфа. Избыток тканевой жидкости попадает в вены и лимфатические сосуды. В лимфатических капиллярах она изменяет свой состав и становится лимфой. Лимфа медленно движется по лимфатическим сосудам и в конце кон¬цов попадает снова в кровь. Предварительно лимфа проходит через особые образования - лимфатические узлы, где она фильтруется и обеззараживается, обогащается лимфатическими клетками.

2. Каков состав крови и каково ее значение для организма?

Кровь - это красная непрозрачная жидкость, состоящая из плазмы и форменных элементов. Различают красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). В организме человека кровь связывает каждый орган, каждую клетку тела между собой. Кровь разносит питательные вещества, полученные из пищи в органах пищеварения. Она доставляет к клеткам кислород из легких, а углекислый газ, вредные, отработанные вещества несет к тем органам, которые их обезвреживают или выводят из организма.

3. Назовите форменные элементы крови и их функции.

Тромбоциты - кровяные пластинки. Они участвуют в свертывании крови. Эритроциты - красные кровяные клетки. Окраска красных кровяных клеток, эритроцитов, зависит от содержащегося в них гемоглобина. Гемоглобин способен легко соединяться с кислородом и легко отдавать его. Красные кровяные клетки переносят кислород от легких ко всем органам. Лейкоциты - белые кровяные клеши. Лейкоциты чрезвычайно разнообразны и борются с микробами разными способами.

4. Кто открыл явление фагоцитоза? Как он осуществляется?

Способность определенных клеток лейкоцитов захватывать микробы и уничтожать их была открыта И.И. Мечниковым - великим русским ученым, лауреатом Нобелевской премии. Клетки лейкоцитов этого типа И.И. Мечников назвал фагоцитами, т. е. пожирателями, а сам процесс уничтожения микробов фагоцитами - фагоцитозом

5. Каковы функции лимфоцитов?

Лимфоцит имеет вид шарика, на его поверхности находятся многочисленные ворсинки, похожие на щупальца. С их помощью лимфоцит обследует поверхность других клеток, отыскивая чужеродные соединения - антигены. чаще всего они встречаются на поверхности фагоцитов, уничтоживших чужеродные тела. Если на поверхности клеток встречаются только «свои» молекулы, лимфоцит движется дальше, а если чужие - щупальца, как клешни рака, смыкаются. Затем лимфоцит посылает через кровь химические сигналы другим лимфоцитам, и те начинают вырабатывать по найденному образцу химические противоядия - антитела, состоящие из белка гамма-глобулина. Этот белок выбрасывается в кровь и оседает на различных клетках, например на эритроцитах. Антитела нередко выходят за пределы кровеносных сосудов и размещаются на поверхности клеток кожи, дыхательных путей, кишечника. Они являются своеобразными ловушками для чужеродных тел, например для микробов и вирусов. Антитела либо склеивают их, либо разрушают, либо растворяют, короче говоря, выводят из строя. При этом постоянство внутренней среды восстанавливается.

6. Как происходит свертывание крови?

Когда кровь из раны вытекает на поверхность кожи, кровяные пластинки склеиваются и разрушаются, а содержащиеся в них ферменты попадают в плазму крови. При наличии солей кальция и витамина К плазменный белок фибриноген образует нити фибрина. В них застревают эритроциты и другие клетки крови, и образуется тромб. Он то и не дает крови вытекать наружу

7. Чем эритроциты человека отличаются от эритроцитов лягушки?

1) У человеческих эритроцитов нет ядра, эритроциты лягушки ядерные.

2) Эритроциты человека имеют форму двояковогнутого диска, а эритроциты лягушки овальные.

3) Эритроциты человека в диаметре 7-8 мкм, эритроциты лягушки 15-20 мкм в длину и около10 мкм в ширину и толщину.